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Flight motors 360L003A and 360L003B (not shown) provide the majority of thrust for the space

shuttle Discovery ascent on 13 Mar 1989. Instl_mentation data and postflight inspection results

again verified exceptional solid rocket motor pel_ormance.
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ABSTRACT

Flight motor set 360L003 was launched at 9:57 a.m. eastern standard time on 13 Mar 1989 as part

of NASA space shuttle mission STS-29R. As was the case with flight sets 360L001 and 360L002

(STS-26R and STS-27R), both motors performed in an excellent manner.

Evaluation of the ground environment instrumentation measurements again velifled thermal

model analysis data and showed agreement with predicted environmental effects (even though the

historical March ambient temperature range was exceeded on both the warm and cold ends). The

right-hand aft field joint primary heater failed during the countdown; the secondary heater was

activated and performed as designed. All other field joint heaters and aft skirt thermal

conditioning systems had no anomalies. Shuttle thermal imager infrared readings compared

favorably with measured ground environment instrumentation data. No thermal launch commit

criteria violations occurred at any time.

Evaluation of the development flight instrumentation showed exceptional propulsion

performance. All ballistic parameters closely matched the predicted values and were well within

the required contract end item specification levels. Girth and biaxial strain gage measurements

compared closely with corresponding gages on previous flight motors, static tests, and with

preflight predictions. Adequate safety factors were again verified. (Some ignition transient

"spiking" was again noted in a few girth gages; the spiking was determined not to be representative

of actual case behavior, but an instrumentation phenomena.) The accelerometers again measured

high vibration amplitude levels during the ignition transient and the reentry Max Q phases.

Posttlight inspection again showed that all combustion gas was contained by the insulation

in the field and case-to-nozzle joints. No anomalous insulation erosion patterns were found, and

the seals that did directly contain motor pressure showed no heat effects, erosion, or blowby. All

anomalies identified were a result of splashdown damage, with the exception of fretting in the case

field joint interference (nonsealing) surfaces and a prelaunch field joint heater failure.

It was again recommended to continue the use of development flight instrumentation on

future flights (particularly accelerometers). The rationale for this recommendation, disposition of

all anomalies, and complete result details are contained in this report.
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INTRODUCTION

The redesigned solid rocket motor (RSRM) flight set used for the 28th space shuttle mission

(Space Transportation System-29R (STS-29R)) and third RSRM flight was composed of motors

360L003A (left) and 360L003B (right). Solid rocket booster (SRB) ignition command time was

89:72:14:57:00.017 Greenwich mean time (9:57 eastern standard time on 13 Mar 1989) at Kennedy

Space Center (KSC), Florida. This volume (Volume I) of this report contains the Morton Thiokol

Flight Evaluation Working Group (FEWG) inputs submittedto United Space Boosters, Inc. (USBI)

for incorporation into the shuttle prime contractors' FEWG report (Document MSFC-RPT-1575).

An executive summary of the entire RSRM flight set performance and a one-to-one correlation of

conclusions by objectives (and CEI paragraphs) are also included herein. The detailed component

volumes of this report (and the approximate timeline for volume release from the launch date) are

as follows:

Volum_._..__ee Component

I System overview

II Case

HI Insulation

IV Seals

V Nozzle

VI Igniter

VII Joint protection
system (heater)

Interim Final
_lease Release.

NA Approximately60 days
afterlaunch

45 days after last
field joint demate
at KSC Hangar AF

45 days after last
field joint demate
at KSC Hangar AF

45 days after last
internal nozzle
joint demate

45 days after final
nozzle joint dis-
assembly

NA

NA

45 days after washout
of last segment at
Clearfield H-7

45 days after last
factory joint dis-
assembly at Clearfield
H-7

45 days after last
factory joint dis-
assembly at Clearfield
H-7

90 days afterfinal
nozzlelinerchar and

erosionmeasurements

30 days afterigniter
disassemblyat
ClearfieldH-7

60 days afterlaunch

REVISION
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VIII Systems tunnel NA

IX Instrumentation NA

X Performance and NA
mass properties

XI Dynamics (recon- NA
structed loads
evaluation)

60 days afterlaunch

60 daysafterlaunch

60 days afterlaunch

60 days after receipt
of reconstructed loads

The subsections of this report volume that were submitted to USBI as part of the FEWG

report are so designated with the FEWG report paragraph number.
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OBJECTIVES

Test objectives for the third Morton Thiokol RSRM flight were derived from the Third Flight Test

Summary Sheet of the D&V Plan (TWR-15723C) and are listed here as contained in the

Engineering Requirements Document for RSRM Third Flight (TWR-18984). They are intended to

satisfy the requirements of CPW1-3600A (including Addendum G) as listed in parenthesis below:

Qualification Test Obiective_

A. Certify that the ignition interval is between 202 and 262 ms with a 40 ms environmental

delay after ignition command (3.2.1.1.1.1, Morton Thiokol proposed).

B. Certify that the pressure rise rate meets specification requirements (3.2.1.1.1.2, Morton

Thiokol proposed).

C. Certify that the thrust-time performance falls within the requirements of the nominal

thrust-time curve (3.2.1.1.2.1, Table I).

D. Certify that the measured motor performance parameters, when corrected to a 60°F PMBT,

fall within the nominal value, tolerance and limits for individual flight motors (3.2.1.1.2.2,

Table II).

Certify that the thrust differential is within specified limits (3.2.1.1.2.3).

Certify that the thrust-time curve complies with impulse requirements (3.2.1.1.2.4).

Cer_dfythatspecifiedtemperaturesare maintainedinthe case-to-nozzlejointregion

(3.2.1.2.1.fand subtierparagraphs).

Certifyproperoperationofthe operationalpressuretransducer(OPT) duringflight

(3.2.1.6.2.1).

Certifyproperoperationofthe igniterchamber pressuretransducerduringflight(3.2.1.6.2.4,

Addendum G).

Certifythe performanceofthe fieldjointheaterand the sensorassembly so itmaintainsthe

casefieldjointat 75°F minimum. Fieldjointsshallnot exceed 130°F (3.2.1.11.a).

Certifythe performanceofthe igniterheaterso itmaintainsthe ignitergasketrubberseals

between 64° and 130°F duringand afterthe motor has been exposedto the ground thermal

environments(3.2.1.5.3).

Certifythateachfieldjointheaterassembly meets allperformancerequirements

(3.2.1.11.1.2).

Demonstrate that the thermal protection insulates the systems tunnel floor plates and cables

against overheating (3.2.1.10.2, Addendum G).

Demonstrate isolation of subsystem anomalies if required on third flight (360L003) hardware

(3.2.3.3).

E.

F.

G.

H,

I*

J,

L.

S.

N,
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O. Demonstrate the RSRM capability of assembly/disassembly in both the vertical and

horizontal positions (3.2.5.1).

P. Demonstrate assembly and verification of the SRB prior to external tank (ET) mating

(3.2.5.4).

Q. Demonstrate that the RSRM and its components are capable of being transported to and

from fabrication, test, operational launch, recovery/retrieval, and the refurbishment sites

(3.2.8).

R. Demonstrate that the RSRM and components are protected against natural environments

during postflight transportation (3.2.8.c).

S. Demonstrate the remove and replace capability of the functional line replaceable unit (3.4.1).

T. Demonstrate facilities and facility equipment (3.4.3).

U. Demonstrate that recovery procedures meet ICD specifications (3.6.2.e).

V. Demonstrate the void repair to joint protection system (JPS) with KSNA.

W. Demonstrate the operation of the igniter heater.

X. Conduct a backflow check of the JPS vent valves.

Y. Demonstrate the locking feature on exit cone leak check port plugs.

Test Objectives by Inspection

Perform the following required postfiight inspections and demonstrations:

Z. Inspect all RSRM seals for performance (3.2.1.2).

AA. Inspect the seals for satisfactory operation within the specified temperature range that

results from natural and induced environments (3.2.1.2.1.b).

AB. Inspect the factory joint insulation for accommodation to structural deflections and erosion

(3.2.1.2.2.a).

AC. Inspect the factory joint insulation for operation within the specified temperature range

(3.2.1.2.2.b, 3.2.1.2.3.b, 3.2.1.2.5.b, 3.2.1.2.4.b).

AD. Verify that at least one virgin ply of insulation exists over the factory joint at the end of

motor operation (3.2.1.2.2.d).

AE. Verify that no leakage occurred through the insulation (3.2.1.2.2.e).

AF. Verify that no gas leaks occurred in the ignition system seals (3.2.1.2.4.d).

AG. Verify that no gas leaks occurred between the flex bearing internal components (3.2.1.2.3.d).

AH. Inspect the risers for damage or cracks that would degrade the pressure holding capability of

the case (3.2.1.3.c).

AI. Inspect the case for tang alignment slots (3.2.1.3.f).

AJ. Inspect the case segment mating joints for the pin retention device (3.2.1.3.g).

Air, Demonstration and post-teet inspection of exit cone severance (3.2.1.4.5).

AL. Inspect the flex bearing for damage due to water impact (3.2.1.4.6.a).

AM. Demonstrate the performance of the nozzle environmental protection (3.2.1.4.7.c).
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AO.

AP.

AQ.

AR.

AS.

AT.

AU.

AV.

AW.

AX.

Verify the performance of the nozzle liner (3.2.1.4.13).

Demonstrate that the exit cone severance ordnance ring performs correctly (3.2.1.4.12).

Inspect the ignition system seals for evidence of hot gas leakage (3.2.1.5.a).

Demonstrate that the igniter and S&A are separable (3.2.1.5.b).

Inspect the igniter for evidence of debris formation or damage (3.2.1.5.2).

Inspect the internal insulation for degradation (3.2.1.8.1).

Inspect the seals for visible degradation from motor combustion gas (3.2.1.8.1.1.d).

Verify by inspection that the insulation met all performance requirements (3.2.1.8.1.1.e).

Inspect insulation material for shedding of fibrous or particulate matter (3.2.1.8.1.1.f).

Inspect the joint insulation for evidence of slag accumulation (3.2.1.8.1.1.g).

Inspect the thermal protection system (TPS) to insure that there was no environmental

damage to the RSRM components (3.2.1.8.2).

AY. Inspect for thermal damage to the igniter chamber or the adapter metal parts (3.2.1.8.3).

AZ. Verify that the ease components are reusable (3.2.1.9.a).

BA. Verify that the nozzle metal parts are reusable (3.2.1.9.b).

BB. Verify through flight demonstration and a post-test inspection that the flex bearing is

reusable (3.2.1.9.c).

BC. Verify that the igniter components are reusable (3.2.1.9.d).

BD. Verify by inspection that the S&A is reusable (3.2.1.9.e).

BE. Verify by inspection that the OPTs are reusable (3.2.1.9.f).

BF. Inspect the case factory joint external seal for moisture (3.2.1.12).

BG. Inspect the hardware for damage or anomalies as identified by the FMEAs (3.2.3).

BH. Determine the adequacy of the design safety factors (SF), relief provisions, fracture control,

and safe-life and/or fall-safe characteristics (3.2.3.1).

BI. Determine the adequacy of subsystem redundancy and fall-safe requirements (3.2.3.2).

BJ. Inspect the RSRM and its subsystems for reuse following recovery and retrieval (3.2.5.7).

Bt_ Inspect the identification numbers of each reusable RSRM part and material for traceability

(3.3.1.5).

BL. Verify the structural SF of the case-to-insulation bond (3.3.6.1.1.2.a).

BM. Verify the structural SF for all adhesive bonds (3.3.6.1.1.2.b)

BN. Verify by inspection the remaining thickness of the case insulation (3.3.6.1.2.2, 3.3.6.1.2.3,

3.3.6.1.2.4, 3.3.6.1.2.6).

BO. Verify by inspection the remaining nozzle ablative thicknesses (3.3.6.1.2.7).

BP. Verify the nozzle SFs (3.3.6.1.2.8).

BQ. Inspect the functional and physical interfaces between the SRBs and the retrieval station

(3.6.2.e).

BR. Inspect metal parts for presence of stress corrosion (3.3.8.2.b).
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3

RESULTS SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

3.1 RESULTSSUMM Y

This section contains an executive summary of the key results from the flight data evaluation and

postflight inspection. Additional information and details can be found in the referenced report

sections or in the separate component volumes of this report.

3.1.1 In-Flight Anomalies

Four in-flight anomalies (IFA) relating to RSRM motor set 360L003 were identified. They are

summarized below.

MSFC IFA No.

STS-29-M-I

STS-29-M-2

STS-29-M-3

Problem/Title/
D@scription

Right-hand (RH) aft field
joint heater malfunction/
circuit failed after

approximately 11 hr of
operation (at about T - 10
hr).

Left-hand (LH) aft center
factory joint weatherseal
unbonds/adhesive unbonds
between case and Chemlock e

205 primer in 11 separate
areas circumferentiaUy
around the case.

Missing phenolic materials
from LH nozzle aft exit

cone/approximately
95 percent of glass-cloth
phenolic (GCP) and carbon-
cloth phenolic (CCP) missing
from unsevered portion of
LH aft exit cone.

Corrective Action/
Closure

Redundant secondaryheater
activatedforremainderof
countdown. Additional

circuitmonitoringand
protectionsafeguards
implemented,as wellas
failurecontingency
guidelines.

Adhesivebond strength

reducedby contamination--
actualunbonding a resultof
splashdown loads(reuse
issueonly).Increased
contaminationcontrol
reduceschance of

reoccurrence.

Phenoliclossa resultof

splashdown loads.Analysis
resultsindicateexitcone

phenolicsin compression

throughout motor burn.
Phenoliclossat splashdown
has no effect on motor
performance, flight safety, or
reuse.
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MSFC IFA No.

STS-29-M-4

Problem/Title/
Description

Fretting in field joints/small
gouges, pits, or scratches on
capture feature interference
(nonsealing) surface.

Corrective Action/
Closure

No flight safety issue due to
scratch size. RH aft field

joints showed scars as deep
as 0.13 in. Fracture
mechanics allow 60 to 70
reuses before achieving
critical scratch size.
Refurbishment issue only.

The complete disposition and closeout statements of all the IFAs are contained in Section 4.1

of this volume. None were considered to be flight constraints.

3.1.2 Mass Properties

Excellent agreement was found between the postflight reconstructed data and predicted mass

property values. Actual weights all varied less than 0.10 percent from the predicted values. As

has previously been the case on motor sets 3601,001 and 360L002, all RSRM weight values were

also within the CEI specification limits. Complete mass property values are included in Section 4.3

of this volume and Volume X of this report.

3.1.3 Propulsion Performance (Ballistics)

3.1.3.1 Propellant Burn Rates/Specific Impulse. The delivered burn rate for flight motors

360L003A and 360L003B was 0.367 in./sec and 0.368 in./sec, respectively, which was 0.001 in./sec

less than predicted for 360L003A and exactly as predicted for 360L003B. Reconstructed vacuum

specific impulse values were 267.5 and 267.8 lbf-sec/lbm for the LH and RH motors, respectively,

both within 0.27 percent of the predicted value of 268.2 lbf-sec]lbm.

3.1.3.2 CEI Specification Values. All time parameters, pressure and thrust levels, and impulse

data (all corrected to 60_F) showed excellent agreement with the motor nominal performance

values. Differences from the CEI specification limits were all significantly less than the allowable

3-sigma variation. Thrust imbalance data were also well within the specification limits for all

required time periods.

Only the RH motor (360L003B) was equipped with an igniter pressure transducer.

Evaluation revealed normal operation and that all parameters were within the limits of Morton

Thiokol Specification STW3-3176. A complete ballistic evaluation is contained in Section 4.4 of this

volume and Volume X of this report.

3.1.4 Ascent Loads

3.1.4.1 Girth Gage Response. The girth gage measurements from the field and case-to-nozzle

joints compared closely to corresponding gages on previous flight motors (360L001 and 360L002),

static tests, and pretest predictions. (As has been the case in the past, the predictions used a
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typicalloadcaseratherthan actualloads,so theywere onlyexpectedto predictwithinan order of

magnitude.) The highestpercentagedifferencesfrom the predictedvalueson the fieldjointswere

19.3percenton the LH RSRM centerfieldjoint.41 percenton the RH RSRM case-to-nozzlejoint

girthgages,and -13.3percenton the LH RSRM casemembrane (Station611.5).

The datafrom the RH RSRM centerand aftfieldjointgirthgagesand a few othergirth

gages on both motors containeda spikeduringthe ignitiontransientat 0.25sec (similarto the

spikingreportedon 360L002). Investigationhas shown thatthisspikingisan instrumentation

phenomenon. (The spikeisbelievedto be an extremelysmallelectricalpulse,the generationof

which is inherit to the gage and electrical circuit configuration.)

Case movement (and thus girth gage response) follows internal motor pressure. However,

girth gages on the RH RSRM forward field joint (all gages) and center joint (three most forward

gages) showed up to a 0.25-sec response delay from motor pressure and the nearby biaxial strain

gage readings. This delay is also believed to be due to the electrical circuit and gage configuration

that caused the above-mentioned data spike. Additional information on the spiking and delay

phenomena is contained in Section 4.9 of this volume.

3.1.4.2 Biaxial Gage (Hoop and Axial Strain) Response. The biaxial gage line/load measurements

also compared well with predicted values. The biaxial strain gage data for each station were used

to calculate a stress distribution, and this information was used to calculate bending moments,

axial forces, and line loads as a function of time. The maximum measured hoop stress results in a

SF of 1.61 (ultimate strength) and no local yielding.

A maximum bending moment of .264 x 106 in.-lb was recorded on the LH RSRM (Station

1797) during space shuttle main engine (SSME) buildup. The maximum axial force was -13.41

kip, and the maximum line load was -28.0 kip/in. (both on RH RSRM at Station 556).

Evaluation of the bending moment and axial force data during the flight envelopes also

revealed a close correlation to past motors and predicted values. A complete evaluation of all

ascent loads is contained in Section 4.6 of this volume.

3.1.5 Structural .Dynamice

3.1.5.1 Vibration Amplitudes. Unexpected high vibration amplitude levels (up to 8g) around the

center field joint area in the radial direction were detected during ignition transient. (Levels up to

5g had been observed on motor set 360L002 (STS-27R)). High-amplitude readings in the axial

direction were also detected on the forward segment All other amplitude readings were within

the expected ranges.

As was alsodetectedon 360L002,extremelyhigh vibrationamplitudelevelslastingfora

significanttime durationwere detectedduringreentryMax Q (approximately300 sec afterlift-off).
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Frequency analysis indicates this is typical white-type aerodynamic wind loading. The relationship

between this loading and the fretting observed in the field joints is being investigated.

3.1.5.2 Modal Frequencies,. The expected trend of frequency levels increasing with time (due to

the decrease of mass as the motor burns) that has been detected on the RSRM static test motors

was not detected on 360L003. (Also, no frequency increase was detected on 360L002; 360L001 was

not sufficiently instrumented to detect these frequency levels.)

3.1.5.3 Accelerometer Gage Limitations and Model Bounds. Identifying the SRB modal

frequencies during flight and evaluation of the unexpected high vibration amplitudes (during both

the ignition transient and reentry Max Q) is extremely difficult due to the current accelerometer

gage ranging. Acceleration predictions are also limited due to the analysis model bounds. The

recommended approach to resolve the unknown aspects of SRB flight dynamics is included in

Section 3.3 of this volume. Additional detailed dynamic evaluation is in Section 4.7 of this volume.

3.1.6 External Thermal Protection System/Joint Heater Evaluation

3.1.6.1 Thermal Protection System Evaluation. Excellent external TPS performance was observed.

No debris from any TPS component was noted, and evaluation showed typical flight heat effects

and erosion.

3.1.6.2 Joint Heaters. After 11 br of operation, the RI-I RSRM aft field joint heater failed at

about the T - 10 hr point in the countdown (see IFA STS-29-M-1). The secondary heater was

turned on; it performed nominally throughout the remainder of the countdown. All other heaters

performed as expected. A detailed TPS and heater evaluation is contained in Section 4.8 of this

volume.

3.1.7 Aero/Tbermal Evaluation

3.1.7.1 On-Pad Local Environment Effects/Thermal Model Verification. The on-pad local

environment predictions (assuming winds from the southeast) suggested a I°F temperature

suppression from cryogenic effects during ET loading. However, the winds were consistently from

the west-southwest, and after assessing ground environment instrumentation (GEI) data only

minor chilling (1 ° to 2°F) on the inboard region of the RH motor (360L003B) was noted.

Ambient temperature data (47 ° to 78°F) exceeded the range of the average March historical

data (61 ° to 73°F) on both the warm and cool ends, with the lower or cooler side showing the

greatest deviation. Windspeeds were also higher than the historical average (reaching 30 kn) a

couple of days before launch, but fell within the historical average prior to launch.

3.1.7.2 Launch Commit Criteria/Infrared Readings. No launch commit criteria (LCC) thermal

violations were noted. The joint heaters performed adequately and as expected, with the exception

noted previously in Section 3.1.6.2. A 30+F temperature delta between the conditioning gas and

solid rocket motor (SRM) hardware was noted in the aft skirt conditioning system (as had also
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been noticed on 360L002 (STS-27)), suggesting significant heat loss between the heater and aft

skirt compartment. Infrared (IR) readings from shuttle thermal imager (STI) were taken at the

T - 3 hr timeframe. The values were verbally reported to range between 59° and 61°F, which

compared favorably with measured GEI data. No IR gun readings were taken during the ice team

pad walkdown.

3.1.7.3 Development Flight Instrumentation Thermal Data Evaluation. Overall development flight

instrumentation (DFI) data were well within the IVBC-3 design trajectory analysis. However,

during reentry, design estimates were exceeded in the SRB aft skirt base region, probably due to

nozzle severance at apogee and aft skirt hydrazine fires (which also have occurred in the past).

The appropriate reuse criteria will be evaluated concerning this base region hardware. Measured

data on the nozzle throat also exceeded the design estimate by a few degrees. This occurrence

does not appear to be a problem, since actual hardware response is still well within the general

reuse steel structure temperature criteria.

3.1.8 Instrumentation

Of the 417 SRM DFI measurements, 389 were operative at lift-off. Of those that were operative at

lift-off, 375 (96 percent) performed properly throughout their respective mission phases. Of the

108 total GEI measurements, 105 (97 percent) performed properly throughout their respective

mission phases. A complete discussion of all instrumentation is contained in Sections 4.10 and

4.11 of this volume and Volume IX of this report.

3.1.9 Postflight Hardware Assessment

3.1.9.1 Insulation. Postflight evaluation again showed excellent insulation performance. No

evidence of motor combustion gas was found past the insulation in the six field joints or two case-

to-nozzle joints. No gas paths or severe erosion was identified in any acreage insulation. All

external insulation was in good condition, with the exception of the LH aft center segment factory

joint, which was damaged at splashdown (IFA STS-29-M-2). A complete insulation evaluation is

contained in Section 4.12.1 of this volume and Volume HI of this report.

3.1.9.2 Cas__e. Fretting was observed on five of the six field joints. Overall, this flight exhibited

fretting comparable to 360L002 (STS-27). A few of the pits measured slightly deeper (as much as

0.013 in.) than those from 380L002. The 360L003 fretting was worse on the LH motor, whereas

on 360L002 the RH motor fretting was worse. (On 380L001 (STS-26R) the fretting was relatively

even.) Investigation of the fretting phenomenon is continuing.

All RH stiffener rings had cracks and buckles. There were a total of five outer ligament

cracks on the boltholes of the corresponding stiffener case stubs. No metal damage was noted on
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the LH stiffener rings and stubs. The crack in the LH forward stiffener stub at 24 deg did not

propagate during flight. A complete evaluation of the case components can be found in Section

4.12.2 of this volume and Volume II of this report.

3.1.9.3 Seals. All seals performed as expected and as designed. Postflight inspection verified that

the insulation contained the motor pressure in the field and case-to-nozzle joints. All other seals

that were exposed to motor pressure performed well, with no heat effects, erosion, or hot gas

leakage evident. A complete seals evaluation is contained in Section 4.12.3 of this volume and

Volume IV of this report.

3.1.9.4 Nozzle/Thrust Vector Control P_rformance. Postflight evaluation indicated that both

nozzles performed as expected during flight, with typical smooth and uniform erosion profiles. The

360L003A (LH) nozzle aft exit cone and joint suffered excessive splashdown damage (IFA STS-29-

M-3). Complete evaluation of both RSRM nozzles is contained in Section 4.12.4 of this volume and

Volume V of this report.

3.2 CONCLUSIONS

Listed below are the conclusions as they relate specifically to the objectives and CEI paragraphs.

Also included with each conclusion, in parenthesis, is the report section in which additional

information can be found.

Objective CEI Para2ravh Conclusion

Certify that the ignition
interval is between 202 and
262 ms, with a 40-ms
environmental delay after
ignition command.

Certify that the pressure rise
rate meets specification
requirements (Morton
Thiokol proposed).

Certify that the thrust-time
performance falls within the
requirements of the nominal
thrust-time curve.

3.2.1.1.1.1 Ignition Interval.
The ignition interval shall be
between 202 and 262 ms...

3.2.1.1.1.2 Pressure Rise
Rate.
The maximum rate of pres-
sure buildup shall be 115.9
psi for any 10 ms interval.

3.2.1.1.2.1 (See Nominal
Thrust-Time Curve)

Certified--The ignition
interval for RSRMs
360L003A and 360L003B
was 0.241 sec for both
motors (Table 4.4-1).

Certified--The maximum

pressure rise rate for RSRMs
360L003A and 360L003B
was 82.7 and 89.9 psi/10 ms,
respectively (Table 4.4-1).

Certified--The thrust-time

performance was within the
nominal thrust-time curve
(Figure 4.4.1).
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Objective

Certifythatthe measured
motor performancepara-
meters,when correctedto a

60°F propellantmean bulk
temperature(PMBT), fall
withinthe nominal value,
tolerance,and limitsfor
individualflightmotors.

Certify that the thrust
differential is within

specified limits.

CEI Paragraph

3.2.1.1.2.2

The delivered performance
values for each individual
motor when corrected to a
60*F PMBT shall not exceed
the limits specified...

3.2.1.1.2.3 Thrust
Differential.
...the differential thrust
between the two RSRMs
shall not be greater than the
values given...

Conclusion

Certified--All motor per-
formance values were well
within the specification
requirements (Tables 4.4-2
and 4.4-3).

Certified--All thrust differ-
entials were well within
the allowable limits
(Table 4.4-2).

Certify that the thrust-time
curve complies with impulse
requirements.

3.2.1.1.2.4 Impulse Gates.
Time Total Impulse
(s_) (10E6 lb-sec)

20 63.1 minimum

60 172.9 -1, +3%
Action time (AT) =
293.8 minimum

Certified--The nominal
thrust-time curve values are
listed below.

Time Value

(sec) L_V_ R__HH

20 63.98 63.94
60 172.11 172.29
AT 295.58 296.10

(Table 4.4-1)

Certify that specified
temperatures are maintained
in the case-to-nozzle joint
region.

3.2.1.2.1.f
Case-to-nozzle joint O-rings
shall be maintained within
the temperaturerange as
specifiedin ICD 2-0A002.
(75° to 120°F)

Certified--Temperature
ranges in the case-to-nozzle
joint region are listed below.
RH = 75°* -88°F
LH = 78o-88oF
(Table 4.9-4)

*One sensor read consist-

ently low

Certifyproperoperationof
the operationalpressure
transducers(OPT) during

flight.

3.2.1.6.2.1
The OPT shall monitor the
chamber pressure of the
RSRMs over the range from
0 to 1,050 _+/15 psi. They
shalloperatein accordance
with ICD 3-44005...

Certified--The OPTs properly
monitored the chamber
pressure and operated in
accordance with ICD 3-
44005. (Recorded pressure
data and values are
discussed in Section 4.4 of
this volume.)

Certify proper operation of
the igniter chamber pressure
transducer during flight.

REVISION

3.2.1.6.2.4 (Addendum G)
Developmental Flight
Instrumentation.
...shall monitor in-flight SRM
igniter and chamber
pressure over the 0 to 3,000
psi range... 0 to 5
Vdc...responseof I00 Hz.

OOC NO.

SEC

Certified--Only 360L003B
(RH) had an igniter chamber
pressure transducer installed,
and the transducer perform-
ed properly. (Complete data
results are discussed in
Section 4.4.5 of this volume.)
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Objective

Certifythe performanceof
the fieldjointheaterand the
sensorassembly so it
maintainsthe casefieldjoint
at 75°F minimum. Field

jointsshallnot exceed
130°F.

Certify the performance of
the igniter heater so it
maintains the igniter gasket
rubber seals between 64°
and 130°F during and after
the motor has been exposed
to the ground thermal
environments.

Certify that each field joint
heater assembly meets all
performance requirements.

Demonstrate that the

thermal protection insulates
the systems tunnel floor
platesand cablesagainst
overheating.

Demonstrate isolationof

subsystem anomaliesif
requiredon thirdflight
(360L003)hardware.

CEI Paragravh

3.2.11.a
The case field joint external
heater and sensor assembly
shall maintain the case field

joint O-ring seals between
75° and 120_F at launch...

3.2.1.5.3 Igniter Heater.
The igniter heater shall
maintain the igniter gasket
rubber seals between 64 °

and 13WF during and after
the motor has been exposed
to the ground thermal
environments.

3.2.1.11.1.2 Power Supply.
Each field joint external
heater assembly shall meet
allperformance
requirements...as defined in
ICD 3-44005.

3.2.1.10.2 (Addendum G)
Grounding.
The systems tunnel shall
provide a low-resistance path
which is electrically con-
tinuous...

3.2.3.3
Isolation of anomalies of
time-critical functions shall

be provided such that a
faulty subsystem element
can be deactivated without

disrupting its own or other
subsystems.

Conclusion

Certified--The joint heaters
maintained all field joints
between 93° and 109°F
during the prelaunch period
(Table 4.8-5).

Certified--The igniter joint
heaters maintained the
igniter joints between 70°
and 101°F during the pre-
launch period (Table 4.8-5).

Certified--The RH aft field
joint heater failed at about T
- 10hr. Use of the
secondary heater was
initiated, which performed
nominally for the remainder
of the countdown. (Details
are discussed in _FA STS-29-
M-1 and Section 4.8.3.5 of
this volume.)

No evidenceofoverheating
or adversethermal effects

was observedon the systems
tunnelfloorplateand cables.
(Detailsare discussedin

Volume VIIIofthisreport.)

The 360L003A (LH) igniter
pressure transducer was
found to be defective and

was replaced with a dual
seal plug (Section 4.2.1).
The 360L003B (RH) aft field
joint heater failed during
prelaunch; the redundant
secondary joint heater was
activated in its place
(Section 4.1). Both sub-
system anomalies were
deactivated and replaced
without subsystem dis-
ruption.

REVISION
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MORTONTHIOKOLINC.

Space Operations

Objective

Demonstrate capability of
RSRM assembly/disassembly
in both the vertical and
horizontal positions.

CEI Paratr_vh

3.2.5,1
The RSRM shall be capable
of assembly/dieassembly in
both the vertical and

horizontal positions. The
RSRM shall be capable of
vertical assembly in a
manner to meet the

alignment criteria of USBI-
10183-0022 without a

requirement of optical
equipment.

Conclusion

RSRM vertical assembly, in
accordance with USBI-10183-
0022, was demonstrated in
the vehicle assembly building
NAB) prior to pad rollout"
No vertical disassembly was
required. Postflight
horizontal disassembly was
accomplished at the Hangar
AF facilities.

Demonstrate assembly and
verification of the SRB prior
to ET mating.

3.2.5.4
The RSRM assembly and
verification on the mobile
launch platform (MLP) shall
be required prior to mating
to the external tank.

The RSRMs were success-
fully assembled on the MLP
prior to being mated to the
ET.

Demonstrate thatthe RSRM

and itscomponents are
capableofbeingtransported
to and from fabrication,test_
operationallaunch,
recovery/retrieval,and
refurbishmentsites.

3.2.8
The RSRM and its

component parts...shall be
capable of being handled and
transported by rail or other
suitablemeans to and from

fabrication, test, operational
launch, recovery/retrieval,
and refurbishment sites.

The RSRM and itsassoci-

atedcomponents demon°
stratedtransportabilityfrom
fabricationin Utah tolaunch

in Florida,where the
components were recovered,
retrieved,and transported
back tothe refurbishment
sitesin Utah.

Demonstrate that the RSRM
and its components are
protected against
environments during
transportation and handling.

3.2.8.c

The RSRM and its compon-
ents...are adequately
protected, by passive means,
againstnaturalenvironments
duringtransportationand
handling.

Post-testinspectionresults

demonstratedno damage to
the RSRM components as a
resultofenvironmental

exposure during
transportation.

Demonstrate remove-and-

replacecapabilityofthe
functionallinereplaceable
unit.

3.4.1

The maintenance concept
shall be to "remove and
replace'...in a manner which
will.., prevent deterioration
of inherent design levels of
reliability and operating
safety at minimum practical
costs.

The 360L003A (LH) igniter
pressure transducer was
removed and replaced with a
dual seal plug (Section 4.2.1)
without deterioration of

safetyor reliabilitydesign
levels.

Demonstrate facilities and

facility equipment.

REVISION

3.4.3 Facilities and Facility
Equipment.
Existing facilities and
equipment must be used for
the storage of spares and
maintenance functions to the
maximum possibleextent.

No new facilitiesor

equipment forsparesstorage
was requiredforflightset
360L003.
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MORTON TI-IIOI_.OL. INC

Space OperaOons

Objective

Demonstrate that recovery
procedures meet ICD
specifications.

Demonstrate the voidrepair
to JPS with K5NA.

Demonstrate the operationof
the igniterheater.(New
igniterheaterelement
materialused--perECP
RSRM 1919--topreclude
repeatpossibilityof QM-8
igniterheaterburn.)

Conduct a backflowtestof
the JPS ventvalves.

_EI pm_rauh

3.6.2.e ICD 2-4A002 Solid
Rocket Booster Retrieval
Station.

Not applicable--No D&V
plan impact. Repairs
performed in accordance
with FEC RSRM 039. All
future configurationchanges
to be documented on

applicabledrawings.

Not applicable--Thermal
performanceofigniterheater
addressedpreviouslyby
paragraph3.2.1.5.8.

Not applicable--NoD&V
plan impact. Bacldlow test
performed under operational
maintenance instructions
(OMI) requirements.

Conclusion

All recovery procedures that
violated ICD 2-4A002 were

documented as preliminary
interface revision notices

(PIRN) and are currently
being worked.

All repaired JPS areas
performed as designed,
remaining intact (no debris)
throughout flight and
showing no significant
reentry heating effects
(Table 4.8-3).

Postflight inspection revealed
no adverse effects from

igniter heater operation
(Section 4.8).

Vent valvebackflowchecks

are performedper the OMI
priorto rollout.No
anomalieswith the vent
valveswere noted.

Demonstrate the locking
featureon exitcone leak

check portplugs.

Postflight inspection of all
RSRM seals to verify seal
performance.

3.3.6.10 Locking Threaded
Parts.
All threaded fasteners shall
be positively locked. Self-
lockingdevicesshallbe used
one time only...

3.2.1.2
Redundant, verifiable seals
shall be provided for each
pressure vessel leak path.
Both the primary and
secondary seals shall provide
independent sealing
capability through the entire
ignition transient and motor
burn without evidence of
hlowby or erosion.

The Nylok° patch locking
featurewas used on the exit

cone portplugs (aswellas
otherplugsthroughoutthe
motor). Postflightinspection
verifiedno looseor backed-

out plugs. (Detailsofthe aft
exitconejointinspectionare
discussedin Section4.11.4.)

No evidenceof hot gas,heat
effect,erosion,or blowby
was evidenton any ofthe
seals(Section4.11.3).

REVISION
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MO[(1-ON THIOKOL INC.

Space Operalions

Objective

Postflight inspection of
factory joint insulation for
accommodation of structural
deflections and erosion.

Postflight inspection to verify
at least one virgin ply of
insulation over factory joint
at end of motor operation.

Postflight inspection of seals
for satisfactory operation
within temperature range
resulting from natural and
induced environments.

Postfiight inspection to verify
no leakage occurred through
the insulation.

Postfiight inspection to verify
no gas leaks occurred in the
ignition system seals.

_EI P_,_n-avh

3.2.1.2.2.a
Sealing shall accommodate
any structural deflections or
erosion which may occur.

3.2.1.2.2.d
The insulation shall provide
one or more virgin ply
coverage at end of motor
operation. The design shall
perform the seal function
throughout SRM operation.

3.2.1.2.1.b Field and

Nozzle/Case Joint Seals...
3.2.1.2.2.b Factory Joint
Insulation...
3.2.1.2.3.b Flex Bearing
Seals...

3.2.1.2.4.b Ignition System
Seals.,,

3.2.1.2.5.b Nozzle Internal
Seato.,

...shall be capable of operat-
ing within a temperature
range resulting from all
natural and induced environ-
ments...all manufacturing
processes, and any motor-
induced environments.

3.2.1.2.2.e
The insulation used as a

primary seal shall be
adequate to preclude leaking
through the insulation.

3.2.1.2.4.d Ignition System.
Each seal shall maintain,
without pressure assistance,
sealing capability with a
joint displacement of 1.4 x
maximum expected
displacement (MED).
Displacement will be applied
in direct ratio to applicable
pressure-time relationship.

Conclusion

The factory joint insulation
remained sealed and
accommodated all deflection
and erosion (Section 4.11.1).

Preliminary inspections
indicate no anomalies with
the factory joint insulation
(Section 4.11.1). Postflight
ply measurements are taken
at the Clearfield H-7 facility.
(Detailed results contained in
Volume HI of this report.)

All field joint seals, case-to-
nozzle joint seals, ignition
system seals, and internal
nozzle seals operated within
all induced environments
and showed no evidence of
heat effects, erosion, or
blowby (Section 4.11.3).
Evaluation indicates no

anomalies with the factory
joint insulation (Section
4.11.1) or the flex bearing
internal seals. (Flex bearing
evaluation is contained in
Volume V of this report.)

No evidence of hot gas
penetration through the
factory joint insulation or
severe erosion was identified
(Section 4.11.1).

All ignition system seals
performed as expected. No
evidence of heat effect,
erosion, or blowby was noted
on any seals, gaskets, or
sealing surfaces (Section
4.11.3).

REVISION
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MORTONTHIOKOLINC

Space Operations

Objective

Postflight inspection to verify
no gas leaks occurred
between the flex bearing
internal components.

Postflightinspectionof risers
fordamage or cracksthat
would degradethe pressure
holdingcapabilityofthe
case.

Postflight inspection of the
case for tang alignment slots.

Postflight inspection of the
case segment mating joints
for the pin retention device.

Demonstration and postflight
inspection of exit cone
severance.

Postflight inspection for flex
bearing damage due to water
impact.

3.2.1.2.3.d
The flex bearing shall
maintaina positive gas seal
between itsinternal

components.

3.2.1.3.c
The case shall contain risers
for attaching the ET/SRB aft
attach ring as defined in ICD
3-44004. The risers shall be
part of the pressurized
section of the case and shall
not degrade the integrity of
the case.

3.2.1.3.f

The case segment mating
joints shall incorporate
provisions to insure proper
segment orientationand
alignment to fa "cflitate
joining, stacking, dis-
assembly, and refurbishment
for reuse.

3.2.1.3.g
The case segment mating
joints shall contain a pin
retention device.

3.2.1.4.5 Exit Cone
Severance.
The nozzle assembly design
shall provide a capability to
jettison a portion of the aft
exit cone assembly...

3.2.1.4.6.a

The nozzleassemblyshall

incorporatea nozzle
snubbing devicesuitablefor
preventingflexbearing
damage resulting from water
impact...

Conclusion

Preliminary inspection
indicates the flex bearing
maintained positive seal
within its internal
components. Detailed
inspection to be completed
during flex bearing
acceptance testing.

No damage or adverseeffects
to the externaltank attach
(ETA) riserswas noted

duringpost-testinspection
(Section4.11.2).All noted

stiffenerringstubdamage
and completecaseevaluation
isin Volume IIofthis

report.

Post-test case inspection
revealed no damage in this
area, indicating that the
segment tang slots provided
proper orientation and
alignment (Section 4.11.2).

The 360L003A (LH) aft
factory joint pin retainer
band was slightly damaged
during splashdown.
However, all pins remained
in place (Section 4.11.2).
(Detailed results contained in
Volume II of this report.)

Severanceofboth nozzleexit

cones occurredat apogee.
(Nozzleinspectionresults
are containedin
Section4.11.4ofthisvolume
and Volume V of this

report.)

Preliminary inspection
indicates no water impact
flex bearing damage
occurred. Final evaluation

to be included during flex
bearing acceptance testing.

REVISION
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MORTONTHIOKOL.INC

SpaceOperations

Objective

Demonstrate the perform-
ance of the nozzle environ-
mental protection.

Postflight inspection to verify
nozzle liner performance.

Note: SCN 49 proposes to
change the CEI
paragraph wedgeout
requirement from
"greater than 0.250 in.
deep" to "yield a
positive margin of
safety'.

Demonstrate performance of
the exit cone severance

ordnance ring.

Postflight inspection of
ignition system seals for
evidence of hot gas leakage.

Demonstrate that the igniter
and safety and arming device
(S&A) are separable.

Postflight inspection of
igniter for evidence of debris
formation or damage.

3.2.1.4.7.c
The plug shall be capable of
being expelled without
dama_ any part of the
Shuttle System or adversely
affecting the SRM
performance.

3.2.1.4.13
The nozzle flame front liners

shall prevent the formation
of:

at Pockets greater than
0.250 in. deep (as
measured from the
adjacent non-pocketed
areas);

b. Wedgeouts greater than
0.250 in. deep;

C. Preflre anomalies except
as allowed by TWR-
16340.

3.2.1.4.12 Aft Exit Cone
Severance Ordnance Ring.
The aft exit cone severance
ordnance ring shall sever a
portion of the nozzle aft exit
cone.

3.2.1.5.a
The ignition system shall
preclude hot gas leakage
during and subsequent to
motor ignition.

3.2.1.5.b
The igniter and the S&A
shall be separable from each
other.

3.2.1.5.2
...the igniter hardware and
materials shall not form any
debris...

Conclusion

No debris or adverse
propulsion effects from the
nozzle plug expulsion were
found (Section 4.11.4).

No nozzle flame front liner
erosion pockets greater than
0.25 in. were observed. All
wedgeouts found greater
than 0.25 in. occurred
postburn and did not affect
liner performance. No
preflre anomalies were
observed (Section 4.11.4).

Successfulseveranceofboth

nozzleexitcones at apogee
was demonstrated.

(Postflightnozzleinspection
resultsare containedin
Section4.11.4ofthisvolume
and Volume V ofthis

report.)

All ignition system seals,
gaskets,and sealingsurfaces
showed no evidenceof heat

effects,erosion,or blowby
(Section4.11.3).

The S&A and igniter were
separated during postflight
inspection. (Details
contained in Volume VI of
this report.)

Preliminary indications show
no evidence of any igniter
debris formation. (Complete
evaluation contained in

Volume VI of this report.)

REVISION
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MOffTON THIOKOL INC.

Space Operadons

Objective

Post-test inspection of
internal insulation for

degradation.

Postflight inspection of seals
for protection of degradation
from motor combustion gas.

Postflight inspection of
insulation for required
performance.

Postflight inspection of
shedding insulation material.

Postflight inspection of joint
insulation for evidence of

slag accumulation damage.

Postflight TPS inspection to
insure no environmental

damage to any RSRM
components.

_EI Paragravh

3.2.1.8.1 Internal Insulation.
...shall be designed to ensure
that the motor operational
integrity and refurbishment
capability is not degraded by
assembly, storage in the
assembled condition, flight,
and/or subsequent thermal
soak for thermal
environments.

3.2.1.8.1.1.d

Insulation shall protect
primary and secondary seals
from visible degradation
from motor combustion gas.

3.2.1.8.1.1.e
The insulation shall...mset

all performance requirements
under worst manufacturing
tolerances and geometry
changes during and after
assembly and throughout
motor operation.

3.2.1.8.1.1.f
Insulation materials shall not

shed fibrous or particulate
matter during assembly
which could prevent sealing.

3.2.1.8.1.1.g
The joint insulation shall
withstand slag accumulation
during motor operation.

3.2.1.8.2
TPS shall insure that the
mechanical properties of the
RSRM components are not
degraded when exposed to
the environments...

Conclusion

All internal insulation

performed as designed and
did not adversely affect
motor operation during flight
or during the subsequent
thermal soak, or any
refurbishment capability due
to storage in the assembled
condition. (Details contained
in Section 4.11.1 of this
volume and Volume III or
this report.)

All motor combustion gas
was containedby the

insulationJ-legon the six
fieldjointsand the
polysulfideadhesiveon the
two case-to-nozzlejoints
(Sections4.11.1and 4.11.3).

Preliminaryinspection
indicatesthe insulationmet

allthe performance
requirements(Section
4.11.1).(Detailedresults
containedin Volume HI of

thisreport.)

No shedding of fibrous or
particulate matter during
assembly was detected
(Section 4.11.1 and Volume
HI).

The insulationwithstoodall

slagaccumulationduring
motor operation(Section
4.11.1and Volume HI).

Normal heat effects and dis-
coloration noted on all TPS
surfaces, with no significant
areas of missing material.
All weatherseal unbonds
were a direct result of

splashdown loads. (TPS
performance contained in
Section 4.8.3.1 of this
volume.)

REVISION
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MORTONTHIOKOLINC.

Space Operations

Objective

Postflight inspection for
thermal damage to igniter
chamber or adapter metal
parts.

Postflight inspection to verify
that case components are
reusable.

Postflight inspection to verify
that nozzle metal parts are
reusable.

Flight demonstration
followed by post-test
inspection to verify that flex
bearing is reusable.

Postfiight inspection to verify
that igniter components are
reusable.

Postfiight inspection to verify
that the S&A is reusable.

gEl Param_vh

3.2.1.8.3

The igniter insulation shall
provide thermal protection
for the main igniter chamber
and adapter metal parts to
ensure that RSRM operation
does not degrade their
functional integrity or make
them unsuitable for
refurbishment.

3.2.1.9.a
Case--Cylindrical segments,
stiffener segments, attach
segments, forward and air
segments, stiffener rings,
clevis joint pins.

3.2.1.9.b
Nozzle metal parts-Boss
attach bolts.

3.2.1.9.c
Flex bearing system--
Reinforced shims and end
rings, elastomer materials.

3.2.1.9.d

Igniter--Chamber, adapter,
igniter port, special bolts.

3.2.1.9.e
Safe and Arm Device

Conclusion

Preliminary investigation
revealed no thermal damage
to the igniter due to lack of
insulation functionality.
(Igniter details contained in
Volume VI of this report).

Five outer ligament bolthole
cracks on the RH stiffener
case stubs were noted during
preliminary investigation.
Fretting observed on five of
six field joints (Section
4.11.2). (Detailed inspection
results are discussed in

Volume II of this report.)

No damage or corrosion to
any nozzle reusable metal
parts was observed. (Section
4.11.4 of this volume and
Volume V of this report.)

Post-test inspection results
indicate no adverse flex

bearing system problems.
Complete evaluation to be
done during acceptance
testing.

Preliminary postflight
inspection revealed nothing
that would adversely affect
reuse of any igniter part.
(Detailed inspection results
contained in Volume VI of
this report.)

Preliminary postflight
inspection revealed nothing
that would adversely affect
reuse of any S&A part.
(Detailed inspection results
contained in Volume VI of

this report.)

REVISION
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MORTON THIOI(,OL, INC,

Space Operations

Objective

Postflight inspection to verify
that OPTs are reusable.

Postflight inspection of the
case factory joint external
seal for moisture.

Postflight inspection of
hardware for damage or
anomalies identified by
failure modes and effects
analyses (FMEA).

Postflight inspections to
determine adequacy of
design SFs, relief provisions,
fracture control, and safe-life
and/or fail-safe character-
istics.

Postflight inspection to
determine adequacy of
subsystem redundancy and
fail-saferequirements.

GEl P_vh

3.2.1.9.f
Transducers

3.2.1.12
The factory joint external
seal shall prevent the
prelaunch intrusion of rain
into the factory joints from
the time ofassembly of the
segment untillaunch...The
factoryjointsealshall
remain intactthrough flight
and, as a goal, through
recovery.

3.2.3

The design shall minimize
the probability of failure,
taking into consideration the
potential failure modes
identified and defined by
failure modes effects
analyses.

3.2.3.1
The primary structure,
thermal protection, and
pressure vessel subsystems
shall be designed to preclude
failure by use of adequate
design safety factors, relief
provisions, fracture control,
and safe-life and/or fail-safe
characteristics.

3.2.3.2
The redundancy require-
ments for subsystems...shall
be established on an in-
dividual subsystem basis, but
shall not be less than fail-
safe...

Conclusion

One OPT on 360L003B (RH)
had some slight case damage
which willbe corrected

duringrefurbishment.No
otherissuesthatwould

adverselyeffectOPT reuse
were noted. (Details
containedin Volume IX of

thisreport.)

The externalweatherseal

protectedthe case adequately
from assembly untillaunch.
Damage to the aftcenter
segment weatherseal(IFA
STA-29-M-2) and moisture

penetrationthrough
developmentflightinstru-
mentation(DFI)wire exit
locationsoccurredat

splashdown. (Detailed
weathersealevaluationis
containedin Volume HI of

thisreport.)

No hardware damage or
anomalies that were
identified by FMEAs were
found. (Specific inspection
results are contained in the
individual component
volumes of this report.)

Postflight inspections verified
adequate design SFs, relief
provisions, fracture control,
and safe-life and/or fail-safe
characteristicsforthe

primary structure,thermal
protection,and pressure
vesselsubsystemsas
documented in thisvolume

and the component volumes

ofthisreport.

The redundant heater on the

RH aft field joint performed
adequately after the primary
heater failed during
countdown (IFA STS-29-M-
I). No other primary
subsystem failurewas noted.

REVISION
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MOR'TON"[HIOKOLINC.

Space Operations

Objective

Postflight inspection for
reuse of RSRM and its
subsystems after recovery
and retrieval.

Postflight inspection of
identification numbers of
reusable components for
traceability.

Postflight inspection of case-
to-insulation bonds struc-
tural SF.

Postflight inspection of
adhesive bonds.

Postflight inspection of case
insulation to verify remain-
ing insulation thickness.

Postflight inspection of case
insulation to verify remain-
ing insulation thickness.

(_EI P_vh

3.2.5.7 Recovery and
Refurbishment.
The RSRM and its sub-

systems shall be capable of
reuse following recovery and
retrieval...

3.3.1.5

Traceability shall be provided
by assigning a traceability
identification to each RSRM

part and material and pro-
riding a means of correlating
each to its historical
records...

3.3.6.1.1.2.a Case/Insulation
Bonds.
3.3.6.1.1.2.b Adhesive
Bonds.
The structural safety factor
for the...bonds shall be 2.0
minimum during the life of
the RSRM.

3.3.6.1.2.2
The case insulation shall
have a minimum design
safety factor of 1.5, assuming
normal motor operation, and
1.2 assuming loss of a
castable inhibitor.

3.3.6.1.2.3
Case insulation adjacent to
metal part field joints,
nozzle/case joints, and
extending over factory joints
shall have a minimum safety
factor of 2.0.

3.3.6.1.2.4
Case insulation in sandwich
construction regions (aft
dome and center segment aft
end) shall have a minimum
safety factor of 1.5.

Conclusion

Preliminary inspection after
recovery and retrieval
indicated no damage that
would prevent reuse of any
RSRM subsystem. (Details
are contained in the

individual component
volumes of this report.)

Inspection numbers for
traceability of each RSRM
part and material are
provided and maintained in
the Automatic Data
Collection and Retrieval
(ADCAR) computer system.
(The past history of all
RSRM parts used is
contained in Section 4.2 of
this volume.)

Verification of a 2.0 SF
cannot be done by
inspection; however, flight
performance verified a bond
of at least 1. Case-to-
insulation bond and adhesive
bond 2.0 SF are verified by
analysis and documented in
TWR-16961.

Detailed postflight insulation
inspections are performed at
the Clearfield H-7 facility.
(Results are contained in
Volume III of this report.)

See above statement.

See above statement.

REVISION
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MORTONTHIOKOLINC.

Space Operations

Objective

Postfiight inspection of case
insulation to verify remain-
ing insulation thickness.

Postflight inspection to verify
remaining nozzle ablative
thickness.

Postflight inspection to verify
nozzle SFs.

Postflight inspection of
functional and physical
interfaces between SRBs and
retrieval station.

Postflight inspection for
presence of stress corrosion.

CEI Paraeravh

3.3.6.1.2.6
Insulation performance shall
be calculated using actual
pre- and post-motor opera-
tion insulation thickness
measurements.

3,3.6.1.2.7

The minimum design safety
factors for the nozzle

assembly primary ablative
material shall be as listed
below...(Values not included
here, as detailed results are
not available at this writing.)

3.3.6.1.2.8
The nozzle performance
margins of safety shall be
zero or greater...

3.6.2.e Interface
Requirements.
The RSRM shall meet the

interface requirements of
ICD 2-4A002 and the Solid
Rocket Booster Retrieval
Station.

3.3.8.2,b
The criteria for material
selection in the design to
prevent stress corrosion
failure of fabricated

components shall be in
accordance with MSFC-
SPEC-522 and SE-019-094-
2H.

Conclusion

Standard measurement

techniques were used for
final evaluation, as discussed
in Volume HI of this report.

Preliminary inspections
indicate nozzle ablative
thicknesses were within
design SFs (Section 4.11.4).
(Detailed results are
contained in Volume V of
this report.)

The nozzleperformance
margins of safety are
discussed in Volume V of
this report.

Both RSRMs were success-
fully recovered and returned
to the Clearfield facility for
refurbishment. All recovery
procedures that violated ICD
2-4A002 were documented as
PIRNs and are being
worked.

No evidence of stress
corrosion was found during
post-test case inspection.
(Details are contained in
Volume II of this report.

3.3 RECOMMENDATIONS

Following are the recommendations made concerning flight set 360L003.

3.3.1 Structural Applications (Ascent Loads) Rec0mm_ndations

To gain additional information concerning the girth gage spiking phenomena, it is recommended

that the cases which had the spiking gages be inspected (during refurbishment) for out of

roundness, case thickness, and any other abnormalities. Also, during the hydrotest a series of

girth and biaxial gages should be installed to measure case strain.
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MorcroN THIOKOL INC,

Space Operations

Since this phenomenon (spiking) is not completely understood, it is also recommended that

DFI be applied to future flights to help determine positively that this is not a real event. These are

the same recommendations given for flight set 360L002.

3.3.2 Structural Dynamics Recomm_n_lations

It is recommended that accelerometers be mounted at or near the center area on at least four

additional RSRM flights to monitor and further understand the SRB vibrations. Additional

confidence and knowledge of the extreme vibrations detected in the center area must be gained

through additional measurements and analyses.

3.3.3 Aerothermal Recommendations

3.3.3.1 .Flight Thermal Desien Environment. It is recommended that NASA consider

incorporating additional body points and environments for hydrazine fire data into the next

revision of the reentry thermal design environment data book. It is evident, based upon STS-29R

nozzle region DFI response, that these additional body points and environments for hydrazine fires

need to be incorporated for the SRB base region.

3.3.3.2 GEI Prediction. Additional model development is recommended for modeling regions that

require more emphasis and detail in order to improve predictions. (Submodels of the ETA ring,

field joint, factory joint, systems tunnel, igniter, and nozzle regions are anticipated to be

incorporated into the global thermal effort.)

It is also recommended that all these models, including the three-dimensional (3-D) SRM

model, he made available for use at Marshall Space Flight Center (MSFC). This would allow

Morton Thiokol thermal personnel the opportunity to support launch countdowns at the Huntsville

Operations Support Center (HOSC) with real-time PMBT, GEI, and component prediction updates

as well as allow MSFC thermal personnel the same modeling capabilities for their needs.

3.3.3.3 Aft Skirt ConditioninR. It is recommended that the aft skirt conditioning gas temperature

be monitored as it enters the aft skirt compartment. It is apparent, based on the STS-29R GEI

sensor steady state response, that substantial gas cooling occurs in the ducting system before the

gas enters the aft skirt. During cold weather monitoring this would allow the use of a higher

operating temperature and at the same time not violate the 115°F maximum within the

compartment.

3.3.3.4 GEI Accuracy. It is recommended that GEl data collection accuracy he increased by

reducing the gage range and increasing the digital word length.

3.3.3.5 Real-Time Data Acquisition. It is recommended that near-real-time on-pad GEI and

environmental data be available to Morton Thiokol after pad validation. These data, collected

hourly, need to be transmitted electronically at weekly intervals until 2 weeks prior to scheduled
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launch dates.From thispointuntillaunch,dailytransmittalsare necessary.These dataare

necessaryto help meet the requirementofPMBT updatespriorto launchand to aid in predicting

the localSRM environmentby buildinga variableconditionsdatabase.

3.3.3.6Nozzle Severance

Based on the severereentryheatingenvironmentsofSTS-29R, itisrecommended thatnozzle

severanceoccurjustpriorto splashdown ratherthan at apogee. Reentry nozzleflame heatingwas

significantforthisflight,exceedingthe 95-percentdesignenvironments.

Itisalsorecommended thatThiokolobtainformalcontractdirectionconcerninghydrazine

firesbeforethe redesignofthe nozzleseverancecable.

REVISION
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4

FLIGHT EVALUATION RESULTS AND DISCUSSION

4.1 RSRM IN-FLIGHT ANOMALIES (FEWG REPORT SECTION 2.1.2)

The summary sheets for the four IFAs identified during evaluation of flight set 360L003 follow.

These summary sheets contain the description, discussion, conclusions, and corrective actions for

each anomaly. All IFAs have been dosed, as indicated by the approval signature of the Level 1I

PRCB chairman. None was considered to be a flight constraint.

4.2 RSRM CONFIGURATION SUMMARY (FEWG REPORT SECTION 2.1.3.2)

4.2.1 RSRM Reuse Hardware

Figures 4.2-1 through 4.2-3 detail the reuse hardware for the 360L003 case segments, LH igniter,

and RH igniter, respectively. Figure 4.2-4 and Table 4.2-1 show the reuse history of the LH

nozzle, while Figure 4.2.5 and Table 4.2-2 show the reuse history for the RH nozzle. The stiffener

ring components are shown in Figure 4.2-6 and the respective reuse history is explained in

Table 4.2-3.

4.2.2 SRM Hardware Changes

Below is a summary of the hardware changes made since 360L002 (STS-27R). A complete

description of these hardware changes is included in Morton Thiokol document TWR-19001a,

Redesigned Solid Rocket Motor Flight Readiness Review--MSFC Level HI.

Nine Class I Hardware Changes Since 360L002 (STS-27R):

a. Vent port plug installation, ECP SRM 1632--Added custom vent port plug with redundant,

verifiable seals to satisfy CEI paragraphs in RH aft center segment and self-locking nylon patch

leak check port plug on both case-to-nozzle joints.

b. Vent port plug nylon patch locking feature, ECP SRM 1725R1--Added nylon patch to leak check

port plugs in both nozzle exit cone joints to comply with CEI requirements.

c. New O-rings on barrier-booster rotor shaft, ECP SRM 11744R1--Provide adequate O-ring

squeeze values

d. Revise DFI wire routing, ECP SRM 1716R2--Allow for changes to igniter heater, nozzle

instrumentation, and TPS configuration drawings.

e. Replace heater cable cork lids with KSNA, FEC RSRM 039--Eliminate potential debris by

replacing TPS cork lids over heater cables with K5NA.

f. Drill side holes on pin retainer buckle Kevlar e strap, FEC RSRM 046R1--Alleviate possibility of

pressure differential in suspected voids.

REVISION DOC NO. TWR-17542-1 i v°L
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PI:ZN 44960 ! Nsrs PROGRAM _E(_IJII_F.MF.'NT,'_ IPAOE 01 OF 03

.................... I CONIROL BOAR[) DIRECTIVE -- LEVEL II I ..........................

PRCBD !;44gAO I Ir'rcu UATE 04/L3/89'

[..;HANI3E,I II'LE:

RDRH RIUHT Ht_ND AFT F'_ELD ,JO]'.NT PRIMARY HEAT[_R CIRCUIT H_LFUNCTZI]N (IF/I)

F:HAN(_E PRC)POC;AI.(S) NO. ANO SOURCE DO.r, LIHENT5 AFFCCTED (NO, ,TI1LE,PARA)

E;l'S-29 ANOMALY TRACI(_NC_ L,I_T

FL.IGHT PRIS rS-29--M-1

INITIAFE'O BY_ ML_FI]-43A4111_. SMITH RUBMIrTEO 8YI MSFC-.SAOI/Q, MARSHALL

L.EUEL IX BASIl:LINE [:HAH[_E rIIRECTICIN_ (JPRI WA S.JIAR

BOARDIDAILY

THIB PPc:rlrl ls ISSUED TO AUTIIOR]:;_E TilI_ CLOSI,.:OIJT [)F _S--29 _R|I

ANOMALY NLIHBI_II _,;TS-29.-M-i PE:R THE FOLL.OWINO RATII]HAL, E_

_TATEMENF OF PRI]BLEM:

RF;RH RI(IHT HAN|I AFT FIELD J()]NT PRIMARY HEATER CI:RCLJIT

C[:A!_r:,I]-FIINP, TICINTN(] AFTER APPROX]:MATELY 11 HOURB 01-':" OPERATIUN.

REIJUNDANT HEATER gA(i ACIIVATE0 F'OR REMAI:NOER IJF TflI: COI.INI0OIJN,

D2 _3C.US,'; I I)N :

FD[IJ]UTNG THE HEATER MALFUNCITON, I,IFTATF:R MONITORS GHOL/EU NC)

U(:]lTA(;E FFI FHE CIRCUIT ANQ A TEMPERATIJRE I]RhDIENI DECREASE.

THE REDIJNn_NI' IIEAIER QAS PO&JEREB-.UP AND FUNCTIONED UNTIL

I AtINL:H. POST FLIOHT INSPECTIONG/HEASUREMENTg _T THE IO

(TAV,_TIIFF) IJH_JLICAL _4F)WED AN OPEN CIRCUIT IN THE PRIMARY

HFAT[ R. OI'HER HEAT_TR I'LEMENT MEABUIIF. MENTS &JERE: NI]MINAL.

REHDUAL [IF FOAM AND KSNA FRC)M THE PRIMARY HE:AT|{:R CABLI"

I':I]NNFCTI]R AND BACKSHELI. REVEALED ARCING DAMAGE ANO BURN

1HROUGH [IF' RI:IUI-'R LEAD{;. RI::COUFREB itEATER CONNECTOR PARTS

WFRI-'{.RI-:MOUED AND SUBMITTED TO KgC MAI...FUNC'FION ANALYSIS LAD

FC)R FAILURE ANAL.YSIG, RESLJLTB OF THE ANALYSZ',_J INOICAFOR

TtJ(] POSSIBLE FAILURE SCENARIOB,

:/ .....:.....................................,v........................................

............. ........

UAR,'; RPT I]020 BARt_ NgT!3 FORM 400B
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$44960

DOCUMENT: $44960

NATIONAL

SPACE SHUTTLE PROGRAM

DOCUMENT CONTINUATION SHEET

PAGE 02 OF 03

OFFICE:

DATE 04/13/89

HEATER FAILURE SCENARIOS

i, THE FAILURE WAS INSIDE THE BACK SHELL OF THE CONNECTOR

AS A RESULT OF STRANDS OF THE ELECTRICAL CABLE SHIELDING

WHICH WERE INSIDE THE BACKSHELL AND AGAINST THE CONDUCTOR

INSULATION AT THE TIME OF POTTING. THE INSULATION

WAS DAMAGED AT THIS POINT. OVER A PERIOD OF TIME AN

ELECTRICAL PATH WAS GENERATED BY CARBONIZATION OF THE

KAPTON INSULATION BY THE 208 VAC HEATER POWER. A

CATASTROPHIC FAILURE OCCURRED WHEN THE CARBONIZED PATH

WAS COMPLETED.

2. THE FAILURE WAS IN THE ELECTRICAL INSULATION OF THE

CONDUCTORS JUST OUTSIDE THE BACKSHELL OF THE CONNECTOR.

THE "KAPTON INSULATION WAS NICKED AND REPEATED BENDING

CAUSED THE INSULATION TO BREAK OPEN. WHEN THE 208 VAC

POWER WAS APPLIED TO THE HEATER, A CARBONIZED BATH WAS

GRADUALLY FORMED THROUGH THE BREAK IN THE INSULATION.

A CATASTROPHIC FAILURE OCCURRED WHEN THE CARBONIZED

PATH WAS COMPLETED.

CONCLUSIONS:

THE 25 AMP CIRCUIT BREAKER WAS INEFFECTIVE IN SENSING THE

FAILURE OR BREAKING THE CIRCUIT PRIOR TO DAMAGE. AN

ELECTRICAL SHORT CIRCUIT OCCURRED BETWEEN THE PRIMARY

HEATER POWER CONDUCTOR AND THE CABLE CONNECTOR BACKSHELL

(SEE ATTACHED FIGURE i). THE ELECTRICAL SHORT-CIRCUIT AND

SUBSEQUENT ARCING RESULTED IN HEATER CONNECTOR DAMAGE THAT

INTERRUPTED POWER TO PRIMARY HEATER ELEMENT. 25.0 AMP

CIRCUIT BREAKER WAS INEFFECTIVE. REMOVAL AND INSTALLATION

OF A NEW AFT CENTER SEGMENT HEATER POWER CABLE MAY HAVE

. DAMAGED THE HEATER CONNECTOR AND CONTRIBUTED TO THE

. SHORT CIRCUIT. SYSTEM DIELECTRIC WITHSTANDING VOLTAGE

[DWV) TEST WAS NOT PERFORMED AFTER POWER CABLE REPLACEMENT.

REVISION ooc_o. TV_-17542-1 J voL
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$44960

DOCUMENT: S44960

NATIONAL

SPACE SHUTTLE PROGRAM

DOCUMENT CONTINUATION SHEET

PAGE 03 OF 03

OFFICE:

DATE 04/13/89

CORRECTIVE ACTION:

CORRECTIVE ACTION IS BEING IMPLEMENTED IN A TWO PHASE FASHION.

IMMEDIATE CORRECTIVE ACTIONS TO ASSURE STS-30 SAFETY-OF-FLIGHT

FOR THE EXISTING HEATER DESIGN INCLUDES IMPLEMENTATION OF

THE INDIVIDUAL DW'V TESTS FOR ALL INSTALLED STS-30 RSRM

FIELD JOINT HEATERS. ADDITIONALLY IN THE UNLIKELY EVENT

THAT AN ANOMALOUS CONDITION ESCAPES DETECTION, TWO OPERATIONAL

SAFEGUARDS HAVE BEEN INCORPORATED: (i) FAST ACTING 20.0

AMP CIRCUIT BREAKERS HAVE BEEN TESTED AND INSTALLED FOR

STS-30. THESE WILL DEACTIVATE HEATER SYSTEM IF AN STS-29

TYPE ANOMALY OCCURS. (2) A NEW CIRCUIT MONITORING AND

PROTECTION SYSTEM COMPUTER SOFTWARE PACKAGE HAS BEEN

TESTED AND INSTALLED FOR STS-30. SOFTWARE FEATURES

HEATER SHUTDOWN AT 19.5 AMPS WITH 40-60 MILLISECONDS RE-

.SPONSE TIME. RCN 8865 HAS BEEN INITIATED TO REDUCE THE

HEATER ACTIVATION TIME FROM L-24 HOURS TO L-8 HOURS.

ALL HEATER/CABLES (EXCEPT LEFT FORWARD FIELD JOINT

REDUNDANT HEATER) HAVE PASSED INDIVIDUAL AND END-TO-END

SYSTEM DWV TESTS. IF THE LEFT FORWARD FIELD JOINT

PRIMARY HEATER FAILS, A CONTINGENCY LCC CHANGE (ECP SRM

2071/ECS 3082) IS BEING INITIATED TO CONTINUE LAUNCH

COUNTDOWN PROVIDED THE MONITORED JOINT TEMPERATURE DOES

NOT GO BELOW 73 DEGREES. THIS ACTION MINIMIZES THE

POTENTIAL FOR LCC VIOLATION IN THE UNLIKELY EVENT OF

PRIMARY HEATER FAILURE.

IN ADDITION TO THE NOTED STS-30 CORRECTIVE ACTIONS,

SUBSEQUENT FLIGHT DESIGN MODIFICATIONS ARE CURRENTLY

BEING EVALUATED. A RE-ASSESSMENT OF THE CURRENT DESIGN

IS UNDERWAY, AND CURRENT CONSIDERATIONS INCLUDE POSSIBLE

MODIFICATIONS TO CONDUCTOR WIRE INSULATION, CONNECTOR

POTTING MATERIAL AND CHOICE OF CONNECTOR, ELIMINATION OF

2 CONDUCTOR WIRES, AND RE-EVALUATION OF ASSEMBLY TECHNIQUES

AND SAFEGUARDS.

EFFECTIVITY: STS-29

LEVEL II IMPACTS AUTHORIZED BY THIS DIRECTION: --WEIGHT: NONE,

--SCHEDULE: NONE, --COST: NONE.
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PCIN 44961 I NSTS PROGRAM REQUIREMENTS IPAGE Ol OF 02

................. I CONTROL BOARD DIRECTIVE - LEVEL II I

PRCBD $44961 I IPRCB OATE 04/12/89

CHANBE TIrLE

LEFT HAND AFT CENTER FACTORY JOINT WEATHERSEAL UNDONe} IIFA}

gHANOE PROPOSAL(S) NO. AND SOURCE

STS-29 ANOMALY TRACKINO LIgT

FLIGHT PR eSTS-29-M-2

IDOCUM_NTS AFFECTEO (NO,,TITLE,PARA)

INITIATED UY= MSFC-SA41/G, SHITH

;LEVEL II BASELINE CHANGE DIREOTIO_I OPR_ WA SJ/LS

BOARD:DAILY

THIS PRCBD IS ISSUED TO AUTHORIZE THE CLOSEOUT OF STS-29 SRB

_NOHALY NUMBER 9TS-29-H-2 PER THE FOLLOWINQ RATZONALE_

SUBMITTED BY_ MSFC-SAO1/W. MARSHALL

STATEMENT OF PROBLEH:

STS-29 LEFT HAND AFT CENTER FACTORY JOINT _EATHERSEAL

UNBOND,

DISCUSSION:

POST FLIGHT INSPECTION REVEALEO THE LEFT HAND (LH) AFT

CENTER FACTORY JOINT OF RSRM-JA HAD SEVERAL SEPARATE

UNBONOS ON THE AFT EDGE OF THE FACTORY JOINT _EATHERSEAL,

THE UNB_NOG WERE ALL ADHESIVE FAILURES BETWEEN THE CASE

AND THE CHEHLOR 205 PRIMER, UNBOND_I OCCURREO IN 11

SEPARATE AREAS. VISUAL INSPECTION OF JOINT SHOWED PIN

RETAINER BAND TO BE RAISED IN ONE UNBONO AREA. FURTHER

INSPECTION REV_LED THE PIN RETAINER BhNO WAS STRETCH_O

BUT NOT BROKEN. PRELIMINARY EVALUATIONS INDICATE UNBONOS

ARE THE RESULT OF SPLASHDOWN LOAOS AS OAMAGE WAS OBSERVED

TO OCCUR ON THE AFT EOGE OF UEATHERSEAL. THE LOCATION OF

DAMAGE WOULD PRECLUDE ANY SCENARIO ASSOCIATED WITH AN

ASCENT OCCURRENCE, REVIEW OF FABRICATION LOGS (RSRM-.1

THRU RSRH-5) REVEALS A CONTAHINATION PROBLEH ON THIS

PARTICULAR FACTORY JOINT (VIA CONSCAN). SURFACE FINISH

READINGS INDICATE THIS JOINT WAS THE SMOOTHEST FACTORY

JOINT TO DATE, QEATHERSEAL SAMPLES REMOVED FROM THE LH

CENTER AFT SEGMENT DO NOT INDICATE SHEAR OR STRESS FAILURE,

FURTHER SUPPORTING CONTAHINATION THEORY,

, _ I DATE
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$44961

DOCUMENT: S44961

NATIONAL

SPACE SHUTTLE PROGRAM

DOCUMENT CONTINUATION SHEET

PAGE 02 OF 02

OFFICE:

DATE 04/12/89

CONCLUSIONS:

WEATHERSEAL DAMAGE RESULTED FROM SPLASHDOWN IMPACT,

ALTHOUGH THE FACTORY JOINT SURFACE CONTAMINATION AND

SMOOTHNESS MAY HAVE CONTRIBUTED TO A REDUCED BOND STRENGTH•

FACTORY JOINT DAMAGE OF THIS TYPE IS NOT CONSIDERED TO BE

A FLIGHT SAFETY ISSUE. IT IS A REUSE CONCERN BECAUSE OF

THE WATER INTRUSION INTO THE JOINT (METAL CORROSION CONCERN).

CORRECTIVE ACTION:

CONSCAN LIMITS THAT HAVE BEEN IMPOSED ON ALL FACTORY

JOINTS AND SURFACE FINISH REQUIREMENTS ARE CURRENTLY

• BEING REVIEWED.

EFFECTIVITY: STS-29

LEVEL II IMPACTS AUTHORIZED BY THIS DIRECTION: --WEIGHT: NONE,

--SCHEDULE: NONE, --COST: NONE.
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PCIN 44762 I NST_ PROGRAM REQUIREMENTS

: ................. I CONTROL BOARD DIRECTIVE - LEVEL II
:PRCBD S44962 J

I
CHANGE TITLE

L/H EXIT CONE EXHIBITED HISSING CCP AND GCP (_FA)

CHANGE PROPOSAL(S) NO. AND SOURCE

_T_-.9 ANOMALY TRACKING LI_T
FLIGHT PR _$TS-2?-M-3

.INITIATED BY: MSFC-$A4i/G. gMITH

LEVEL iI BASELINE CHANGE DIRECTION

"I .... I
I PAGE 0t OF 02 I
I I
IPRC9 DATE 04/t3/B91
I I

DOCUMENTS AFFECTED (NO,,TITLE,PARA)

SUBMITTED BY: MSFC-SAOI/W. MARSHALL

OPR: WA SJ/L$
BOARD:DAILY

THIS PRCBD IS ISSUED TO AUTHORIZE THE CLOSEOUT OF ;TS-29 3RB
ANOMALY NUMBER ST$.-2?-M-3 PER THE FOLLOWING RATIONALE:

f
1
I

"1

STATEMENT OF PROBLEM:
STS-29 LEFT HAND EXIT CONE EXHIBITED MISSING CARBON

• CLOTH PHENOLIC (CCP) LINER AND GLASS CLOTH PHENOLIC
_GCP) INSULATOR _ATERIAL_.

DI3CUSSION:
' POST FLIGHT IN3PECTION REVEALED MISSING CARBON CLOTH
i • PHENOLIC LINER AND GLASS CLOTH PHENOLIC INSULATOR OVER
, APPROXIMATELY 95 PERCENT OF THE FORWARD (UNSEVERED)

PORTION OF THE AFT EXIT CONE SHELL. FIVE SMALL 'SPOTS'
OF ADHESIVE REMAINED BONDED TO THE SHELL AND EXHIBITED A
GLOSSY FINISH AT THE GLASS CLOTH PHENOLIC INTERFACE,

. INDICATING THAT BONDLINE VOIDS WERE PRE3ENT. $TS-29

. AFT EXIT CONE(S} SEVERANCE OCCURRED AT APOGEE AND MAY
; HAVE CONTRIBUTED TO LOSS OF PHENOLIC$ DUE TO INCREASED

HEATING OE THE SHELL EXTERIOR AND ADHESIVE BONDLINES,
m

' .....
J_HAIRMAN, LEVEL II PRCB

J

04/t3/99

DATE

BARS RPT B020 BARS NSTS FORM 4003
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IPCIN 44?6?
I

i

I 244962
I
I£.OCUMENT: _44962
I
I
I

NATIONAL
_PACE SHUTTLE PROGRAM

DOCUMENT CONTINUATION 3HEET

PAGC 02 OF 62
_m_maq

OFFICE:

IDATE 04113189

REVIEW OF $TS-29 INSTRUMENTATION DATA SHOWS THAT THE
L:NER AND INSULATOR WERE LOST DUE TO LOAD3 RESULTING FROM
SPLASHDOWN. THE EXPOSED ALUHINUH SHELL SHOWED NO SIGNS
OF ANY HEAT EFFECTS, FURTHER INDICATING THIS EVENT OCCURRED
AT SPLASHDOWN. A REVIEW OF THE 3T3-29 AFT EXIT CONE
BONDING'LOG SHOWS THAT NO DISCREPANCY REPORTS OR PROCESS
DEPARTURES WERE INITIATED DURING PROCESSING. ONE EDGE
VOID WAS REPAIRED PER %TANDARD SHOP PLANNING.

CONCLUSIONS:
• SHELL EXTERIOR TEMPERATURES WERE SIGNIFICANTLY HIGHER

BETWEEN 300 SECONDS (RE-ENTRY INTO ATMOSPHERE) AND 4De
SECONDS (SPLASHDOWN). SEVERING AT APOGEE CAUSED INCREASED

• HEATING OF THE SHELL, LOSS OF _OND AND LOSS OF THE EXIT
CONE PHENOLICS AT SPLASHDOWN, STRUCTURAL ANALYSIS RE$ULT_
(MTI TWR-16975) SHOW AFT EXIT CONE PHENOLIC$ ARE IN
COMPRESSION AND WILL REMAIN IN THE SHELL THROUGHOUT
MOTOR BURN, WITH CONSERVATIVE AZSUMPTION$, INCLUDING NO
ADHESIVE BOND STRENGTH. NO PROCESSING PROBLEH_ ARE KNOWN
TO HAVE AFFECTED THE AFT EXIT CONE COMPONENT BONDING/
FABRICATION.

CCRRECTZVE ACTION:
I

$T$-30 AFT EXIT CONE SEVERANCE WILL NOT OCCUR AT APOGEE,
I(SC POST FLIGHT ENGINEERING EVALUATION LIMITS DOCUMENT
(TWR 18e60, VOLo 5) WILL BE REVISED TO SHOW THAT POST-
FLIGHT INSPECTION FINDINGS OF: t. EXIT CONE GCP LINER
AND GCP INSULATOR DhMAGE AT SPLASHDOWN, AND 2. SMALL
AFT EXIT CONE SHELL BONDLINE VOID_ ARE BOTH ACCEPTABLE
AND $HOULD BE EXPECTED.

EFFECTIVITY: ST$-29

LEVEL II IMPACTS AUTHORIZED BY THIS DIRECTION: --WEIGHT: NONE,

m-_CHEDULE: NONE, --COST: NONE.
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IPCIN 44963 I NSTS PROGRAH REQUIREMENTS IPAGE _] OF 02
i ................. I CONTROL BOARD DIRECTIVE - LEVEL II I
_PRCBD $44963 l IPRCB DATE 04/t3/89
I I I
:CHANGE TITLE
I FRETTING CORROSION PITS�SCRATCHES/GOUGES ON RSRM LH AND RH CA3E FIELD
I JOINT CAPTURE FEATURE INTERFERENCE SURFACES (IFA)

ICHANCE PROPOSAL(S) NO. AND SOURCE
I
I STC-2? ANOMALY TRACKING LI3T
I FLIGHT PR# _T_-29--M-4
I

iINITIATED BY: MSFC-SA41/G, SMITH
I
ILEVEL il BASELINE CHANGE DIRECTION:

IDOCUMENT3 AFFECTED (NO.,TITLE,PARA)
I
I
I
I
I
13UBHITTED BY: MSFC-_AQt/W, MARSHALL
I

OPR: WA SRJIMLB
BOARD:DAILY

THIS PRCBD IS ISSUED TO AUTHORIZE THE CLOgEOUT OF ;TS-2? ;RB ANOMALY
NUMBER 3T$-2?-M-4 PER THE FOLLOWING RATIONALE:

%TATEHENT OF PROBLEM:
FRETTING CORROSION PITS�SCRATCHES/GOUGES ON 3TS-2? RSRM LH AND

• RH CASE FIELD JOINT CAPTURE FEATURE INTERFERENCE SURFACES. "
.. _.o,..,,.,... = ..,..,,,., .... , ..... , ..... , • .., ..., , •

DISCUSSION:
INITIAL ST$'29 POST FLIGHT HARDWARE INSPECTIONS IDENTIFIED THAT 4
OF 6 CASE FIELD JOINTS HAD TYPICALLY FRETTED AREAS ON

• INTERFERENCE FIT gURFACE$. ANOTHER WAS FRETTED VERY LIGHTLY AND A
. %ZXTH JOINT EXHIBITED NO FRETTING, THE RH AFT FIELD JOINT

?RETTING SCARS WERE D_PER (e.etS') AND MORE £EVERE THAN ANY SENT
TO DATE ($T$-2_ & 27A'3". AS IN PREVIOUS FRETTING INSPECTIONS, THE
FRETTING SCARS (SCRATCHES/SMALL PITS/ GOUGES) OBSERVED ON INNER
CLEVIS LEG JOINT SURFACES ARE MATCHED WITH CORRESPONDING PITTED
AREAS ON THE CAPTURE FEATURE SURFACE, THIS I$ THE F_RST INSTANCE
OF A FRETTING SCAR EXCEEDING THE O,0tO' DEPTH LIMIT ALLOWED BY THE
CASE REFURBISHMENT SPECIFICATION STW7-2744. FRACTURE MECHANICS
ANALYSIS I$ BEING UTILIZED TO DETERMINE/PREDICT EXPECTED REUSE
LIFE OF SUCH FRETTED CASE HARDWARE.

I

_4/13/89

DhTE

BARS NST$ FORM 4ee3
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PAGE 02 OF 02

OFFICE:
.... -------------- !

DATE 04/13/89

CONCLUSIONS:

FRETTING OCCURS AT METAL-TO-METAL CONTACT SURFACES UNDER LOAD AND

SUBJECTED TO VIBRATION AND SLIP. RSRM CASE FRETTING CAUSED BY

HIGHLY LOCALIZED FRICTION WELDING BETWEEN CLOSELY-FITTING

INTERFERENCE PORTION OF THE MATCHED FIELD JOINT CAPTURE FEATURE

SURFACES. TIME OF OCCURRENCE REMAINS UNCLEAR. STS-29 RH AFT

• FIELD JOINT FRETTING SCARS (0.013") EXCEED CURRENT REFURBISHMENT

• _ SPECIFICATIONS LIMITS (0.010") MAXIMUM DEPTH AND WILL RESULT IN A

DISCREPANCY REPORT DURING REFURBISHMENT INSPECTION• FRETTING IS

NOT CONSIDERED TO BE A FLIGHT SAFETY ISSUE.

CORRECTIVE ACTION:

CONTINUE WITH POST FLIGHT REFURBISHMENT ACTIVITY OF HAND REMOVAL

OF ALL BURRS AND SMOOTHING OF ANY RAISED METAL ON BOTH CAPTURE

• FEATURE COMPONENT SURFACES• STUDY/EVALUATE METHODS TO PINPOINT

TIME OF OCCURRENCE. CONTINUE SUBSCALE MODELING/TESTING ACTIVITIES

• AND JOINT SURFACE COATING AND LUBRICATION STUDIES• CONDUCT

FRACTURE MECHANICS ANALYSIS TO PREDICT USEFUL LIFE.

EFFECTS ON SUBSEQUENT MISSIONS:

FRACTURE MECHANICS CALCULATIONS INDICATE FLAWS OF THIS MAGNITUDE

• (0•013" DEPTH X 0.33" LENGTH X 0.22" WIDTH} WOULD ALLOW AN

ESTIMATED 60-70 HARDWARE USES BEFORE ACHIEVING A CRITICAL SIZE.

FRETTING IS CURRENTLY CONSIDERED TO BE A REFURBISHMENT ISSUE WITH

NO FLIGHT SAFETY EFFECTS•

EFFECTIVITY: STS-29

LEVEL II IMPACTS AUTHORIZED BY THIS DIRECTION: --WEIGHT: NONE,

--SCHEDULE: NONE, --COST: NONE.
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Table 4.2-1. Previous Use History--LH Nozzle (360L003A)

PartNo.

1U51061-04,
Snubber Segment

1U51066-02,
Axial Shim Retainer

Serial No. Previous Use

0000106R1 SRM-5A
0000107R1 SRM-5A
0000108R2 SRM-5A, 19A
0000109R1 SRM-5A
0000110R2 SRM-5A, 19A
0000111R2 SRM-5A, 19A
0000112R2 SRM-5A, 19A
0000113R2 SRM-5A_ 19A
0000114R2 SRM-5A, 19A
0000115R2 SRM-5A, 19A
0000116R2 SRM-5A, 19A
0000117R2 SRM-5A, 19A
0000118R2 SRM-5A, 19A
0000119R1 SRM-5A
0000120R1 SRM-5A
0000121R2 SRM-5A, 19A
0000122R2 SRM-5A, 19A
0000123R1 SRM-5A
0000124R1 SRM-5A
0000125R2 SRM-5A, 19A
0000126R2 SRM-5A, 19A
0000127R2 SRM-5A, 19A
0000135R2 SRM-5A, 19A
0000139R2 SRM-5A, 19A
0000141R1 SRM-5A
0000144R1 SRM-5A
0000155R1 SRM-5A
0000159R2 SRM-5A, 19A
0000162R2 SRM-5A, 19A
0000941R1 SRM-19A
0000942R1 SRM-19A
0000943R1 SRM- 19A

0001122 through New
0001313 New
0001314 New

REVISION
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Table 4.2-2. Previous Use History--RH Nozzle (360L003B)

Part No.

1U51061-04,
Snubber Segment

1U50166-02,
Axial Shim Retainer

Serial No.

0001601 through
OO01632

0001315 through

0001339, 0001341,
0001342, 0001344,
0001345, 0001346,
0001347, 0O01348

Previous Use

New

New
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Table 4.2-3.

Part No.

1U52502-04,
Stiffener Ring

1U52502-07,
Stiffener Ring

1U52502-08,
Stiffener Ring

1U52503-04,
Splice Plate

1U52503-05,
Splice Plate

PreviousUse History--Stiffener Rings

SerialNo. PreviousUse

0000065R1 SRM-24
0000066R1 SRM-24
0000067R1 SRM-24
0000068R1 SRM-24
0000079R1 SRM-19
0000083R1 SRM-21

0000001R2 SRM-14, 23
0000002R2 SRM-14, 23
0000005R2 SRM-15, 23
0000055R1 SRM-22
0000056R1 SRM-22
0000062 New

0000008R2 SRM-15, 24
0000009R2 SRM-15, 24
0000044R1 SRM-20
0000045R1 SRM-20
0000046R1 SRM-20
0000052R1 SRM-21

0000111 New
0000112 New
0000149 New
0000085R1 SRM-19
0000086R1 SRM-19
0000087R1 SRM-19
0000088R1 SRM-19
0000090R1 SRM-19
0000091R1 SRM-20
0000092R1 SRM-20
0000093R1 SRM-20
0000094R1 SRM-20

0000001 New
0000002 New
0000005 New
0000015 New
0000020 New
0000022 New
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Table 4.2-3.

Part No.

1U52504-05,
Adapter Plate

1U52505-02, Plate,
Stiffener Ring

1U52505-01, Plate,
Stiffener Ring

Previous Use History--Stiffener Rings (cont)

SerialNo. PreviousUse

0000019R2 SRM-15, 23
0000027R2 SRM-16, 24
0000028R2 SRM-16, 24
0000086R1 SRM-18
0000087R1 SRM-19
0000089R1 SRM-19
0000090R1 SRM-19
0000094R1 SRM-19
0000099R1 SRM-20
0000103R1 SRM-23
0000104R1 SRM-23
0000106R1 SRM-23

0000079R1 SRM-18
0000080R1 SRM-18
0000081R1 SRM-18
0000082R1 SRM-18
0000139 New
0000140 New
0000141 New
0000142 New

0000001R3
(fleet leader)
0000002R3
(fleet leader)
0000004R3
(fleet leader)
0000008R3
(fleet leader)

SRM-8, 13, 19

SRM-8, 13, 19

SRM-8, 13, 19

SRM-8, 12, 19
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g. New igniter heater element material, ECP RSRM 1919--Precludes repeat possibility of QM-8

igniter heater burn.

h. Removed and reinstalled rv_g_mce temperature detectors (RTD) and strain gages from igniter

adapter and forward dome, FEC RSRM 045--Allowed igniter heater element to be installed

flush on igniter adapter.

i. Hardware Changeout--Replace LH igniter pressure traneducer with dual seal plug, FEC

RSRM 050--DFI transducer did not meet refurbishment specification; no replacement part

available.

4.3 SRB MASS PROPERTIES (FEWG REPORT SECTION 2.2.0)

4.3.1 Sequential Mass Proverties

Tables 4.3-1 and 4.3-2 provide 360L003 (STS-29) LH and RH reconstructed sequential mass

properties, respectively.

4.3.2 Predicted Data Versus Postfli2ht Reconstructed Dat_

Tables 4.3-3 and 4.3-4 compare RSRM predicted sequential weight and center of gravity (cg) data

with postflight reconstructed data. Preflre mass properties data are based on average actual data

presented in the 5 Sep 1988 Mass Properties Quarterly Status Report (TWR-10211-88) for a

lightweight case configuration with DFI. Actual 360L003 mass properties may be obtained from

Mass Properties History Log Space Shuttle 360L003-LH (TWR-17338, dated 25 Oct 1988) and

360L003-RH (TWR-17339, dated 25 Oct 1988). Postflight reconstructed data reflect ballistics mass

flow data from the 320 sample per second (sps) measured pressure traces and a predicted slag

weight of 1,518 lb. Those mass properties reported after separation reflect delta times from

separation and nose cap separation previously used on earlier flights.

4.3.3 CEI Specification Requirements

Tables 4.3-5 and 4.3-6 present CEI specification requirements and predicted and actual weight

comparisons. Mass properties data for both RSRMs comply with the CEI specification

requirements.

4.4 RSRM PROPULSION PERFORMANCE (FEWG REPORT SECTION 2.3.0)

4.4.1 High P_rformance Motgr (HPM)/P_RM P_rf0rmance Comparisons

The reconstructed thrust-time traces of flight motor set 360L003 at standard conditions were

averaged with the HPM/RSRM population and compared to the CEI specification limits. The

results are shown in Figure 4.4-1.

4.4.2 SRM Propulsion P¢rform_nc¢ ComparisCn_

The reconstructed RSRM propulsion performance is compared to the predicted performance in

Table 4.4-1. The RSRM ignition interval is to be between 202 and 302 ms after ignition command

REVISION-- OOCNO. TWR-17542-1 I voL

s_c I PAGE47

89857-3.2



-- MORTON THIOKOL INC.

Space Operations

O

E

¢,)

O

v-4

e_

i-

I,.

r.:
_z
t¢'3
O0

O0

REVISION ooc _o. TW'R-17542-1 I VOL

sec I _0_ 48



-- MORTON THIOKOL INC

Space Operations

I=
o

o
E

v

O

2

¢)

0,,)

o

[--

, ° • ,

o

d _ d _5 d <:5

_,_ ,,
°

n

?, _ e

REVISION
ooc .o, TWR-17542-1 I vo,

SEC I PAGE 49

t_

r_
V3
O0



_ MORTON THIOKOL INC.

Space Operations

0

0

e4

!

tZ

REVISION
OOCNO.TWR-17542-1 Jvot

sec J _ 50



-- MomoN THIOKOI,INC

Space Operations

i=
o

o

o

E

o

I=

¢,)

[..

._

_I _ " ' "
i"

_1___

•-_ _,_ _ _ I_

-s-1 _' "

REVISION
_oc_o. TWR-17542-1 I VOl

_c I _E 51

oO

o_



-- MORION TIdlOKOL INC

Space Operations

, o
_E

0

°_,.,r_

o

[.-

o _ . ... __ ____
+ + + + +

tl,

+ +!

o, o

o o

_, _ _ _ _._-_z _ _ :_ _

P-

O_
n_

°_

_._

_.r_

e_

_.g

REVISION
ooc_o. TWR-17542-1 I VOL

52SEC [ PAGE



MORTON THIOKOL INC.

Space Operations

e_
[-,

+ + + + + +

! !_1_ " e _ •

e-i e-i

o rO _J

;_1 _ _ _ _ _ _-_• ._ _ _ z _ _ _ _ _

.¢Ir_

t_

_.B

_.a
I

r_

tZ

REVISION ooc NO TWR-17542-1 [ vo,

s_c I P"o_



-- MORTON THIOKOL INC.

Space Operations

o
'8
E

.1

..D
N
V

o
._

I-i

o
C..)

o_
O

,-I

<

;>

"o

e.)

[-,

c_

o

O

•-_+ +
+

C,

p.. ¢e_

e--I _ e-(

e-I

o

<

m o_

8 W

, +

I::1
o

%

v

_2

t_
rZ

REVISION
oocNO, TWR-1'7542-1 I voL

sec I _'_ 54



_ MorcroN THIOKOL INC

Space Operalions

0

,.e

_s-

o_
I,.i

0

(D

>.

r_

i-,

t--I

0
U"I

0

{D

+++

0

%

.<

o._

+

e_
0

o_

0

0

°_

u= @

_ "

_.-- _

_ _ o
!. _.4.N ,_

I'':

_z

REVISION

_0c NO TWR-17642-1 I VOL

sEc I p_oE 66



-- MORTON THIOF, OL INC

Space Operations

I
I
I
I
t
%

I

I
I
I

o

o

o
o

o
ol

o
co

u

o
E

o

o

o

o

o

Q
0

I-

E
I-
I

I-

Q

r-
0
u
q)

rr

I
q.

8

0
E

REVISION

(#ql) ;smqJ. mnnoeA

OOC NO. TWR-17542-1 I v°_
SEC ( PAGE 56



_ MORTONTHIOKOI_.INC.

Space Operations

Table 4.4-1. RSRM Propulsion Performance Assessment

Impulse Gates
1-20 (10 s lbf-sec)
1-60 (I0s lbf-sec)
I-AT (10 e ibf-sec)

LH Motor (62°F) RH Motor (62°F)
Predicted Actu_ Predicted Actual

64.73 63.98 64.80 63.94
172.52 172.11 172.68 172.29
298.33 295.58 296.51 296.10

Vacuum I_ 268.2 267.5 268.2 267.8
(lbf, see/lbm)

Burn Rate (in./sec) 0.368 0.367 0.368 0.368
(600°F, 625 psia)

Event Times (sec)
Ignition Interval 0.232 0.241 0.232 0.241
Web Time 111.1 111.4 111.1 111.4
Time of 50-psia Cue 120.8 120.8 120.7 120.9
Action Time 123.1 124.1 123.1 123.8
Separation Command (see) 125.7 125.8 125.7 125.8

PMBT (°F) 62.0 62.0 62.0 62.0

Maximum Ignition Rise Rate 91.9 82.7 91.9 89.9
(psia/10 ms)

Decay Time (sec) 2.9 4.0 2.8 3.5
(59.4 psia to 85 K)

Talloff Imbalance
Impulse Differential
(lbf-sec)

Predicted Actual

+47 K +61 K

Note: Impulse imbalance ffi LH motor - 1_[ motor
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to the NASA standard initiators in the S&A. The ignition interval ends when the headend

chamber pressure has increased to a value of 563.5 psia. The maximum rate of headend chamber

pressure buildup during the ignition transient is required to be less than 115.9 psia for any 10-ms

interval.

Separation is based upon the 56-psia cue from the last RSRM, plus 4.9 sec, plus a time

delay between the receipt and execution of the command to separate. No time delay is assumed in

the prediction. The decay time intervals are measured from the time motor headend chamber

pressure has decayed to 59.4 psia to the time corresponding to 85,000 lb of thrust.

4.4.3 Matched Pair Thrust Diff_r¢ntial

Table 4.4-2 shows the thrust differential during ignition, steady state, and tailoff. All the thrust

differential values were near the nominal values experienced by previous flight SRMs and were

well within the CEI specification limits. The thrust values used for the assessment were

reconstructed at the delivered conditions of each motor.

Table 4.4-2. RSRM Thrust Imbalance Assessment

Event

Ignition (0 to 1.0 sec, lbf)

Steady State (1.0 sec to first
web time minus 4.5 sec, lhf,
4-sec average)

Transition (first web time
minus 4.5 sec to first web

time, lbf)

Tailoff (first web time to
last action time)

Imbalance Maximum Time of

Specification Imbalance Maximum Imbalance
0bf) 0bf) (sec)

300K -88.8K 0.094

85K -39.0 K 90.0

85 - 268 K +30.8 K 111.0
linear

710K +46.1K 112.0

Note: Thrust imbalance ffi LH motor - RH motor '

4.4.4 Performance Tolerances

A comparison of the LH and RH motor calculated and reconstructed parameters at PMBT of 60°F

with respect to the nominal values and the SRM CEI specification maximum 3-sigma requirements

is shown in Table 4.4-3.
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Table 4.4-3. RSRM Performance Comparisons

SRM CEI

(+/-)
Max 3-Sigma
Var (%)

Nominal
Value**

LH SRM
RSRM-3A

Web Time (see) 5.0 111.7 111.4

Action Time (sec) 6.5 123.4 124.1

Web Time Avg Pressure 5.3 660.8 659.8
(psia)

Max Headend Pressure 6.5 918.4 895

(psia)

Max Sea Level Thrust 6.2 3.06 3.04
(Mlbf)

Wet Time Avg Vac 5.3 2.59 2.58
Thrust (Mlbf)

Vac Del I 0.7 267.1 267.5
sp

(lbf, scc/lbm)

Web Time Vac Total 1.0 288.9 287.8

Impulse (Mlbf, sec)

Action Time Vac Total 1.0 296.3 295.4

Impulse (Mlbf, sec)

RH SRM
RSRM-3A RSRM-3B RSRM-3B

Var (%)** (60°F) Var (%)**

-0.27 111.4 -0.27

0.57 123.8 0.32

-0.15 660.8 0.00

-2.55 890 °3.09

-0.65 3.05 -0.33

-0.39 2.59 0.00

0.15 267.8 0.26

-0.38 288.2 -0.24

-0.30 295.9 -0.13

*QM-4 static test and SRM-8A and B; SRM-gA; SRM-10A and B; SRM-11A; SRM-13A and B flight average at
standard conditions

**Variation = [(RSRM-2A - nominal)/nominal] • 100
[(RSRM-2B - nominal)/nominal] • 100

.ev,slo_ soc.o TWR-17542-1
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4.4.5 360L003 Igniter Performance

Only one motor, 360L003B (RH), was equipped to measure igniter chamber pressure. Initial

assessment of the performance of this igniter showed normal operation. The maximum pressure of

1,974 psia was exactly as predicted. The igniter operated within the limits of Morton Thiokol

Specification STW3-3176.

4.5 RSRM NOZZLE PERFORMANCE (FEWG REPORT SECTION 2.4.3)

The maximum RSRM nozzle torque was 2.96 x 106 in.-lbf and 3.59 x l0 s in.-lbf for the LH and

RH motors, respectively. This compares well with previous flight data and to static test torque

data. Nozzle char and erosion performance is discussed in Section 4.11.4 of this volume.

4.6 RSRM ASCENT LOADS--STRUCTIYRAL ASSESSMENT (FEWG REPORT SECTION 2.5.2)

4.6.1 Introduction

The 360L003 RSRMs were fully instrumented in order to evaluate motor performance duzing hold-

down, lift-off, and ascent through separation. This section details the assessment of the case field

joints, case-to-nozzle joints, and case metal components. Comparisons to flight envelopes and

previous flights will also be presented.

4.6.2 Summary

4.6.2.1 Girth Gaee Resvonse. The girth gage measurements from the field and case-to-nozzle

joints compare closely to corresponding gages on static tests as well as to pretest predictions. The

predictions used a typical load case rather than actual loads, so they were only expected to predict

the order of magnitude. The highest percentage difference from the predicted values on the field

joints was -19.3 percent on the LH center field joint, 41 percent on the RH case-to-nozzle joint

girth gages, and -13.3 percent on the LH RSRM case membrane (Station 611.5).

The data of the center and aft field joint girth gages on the RH SRB and a few others on

both motors contained a spike during the ignition transient that was similar to that seen on

360L001 and 360L002. Girth gage data on the forward field joint and several on the center field

joint of the RH SRB show a delay before movement occurs. Investigation has shown this spiking

to be an instrumentation phenomena. (The spike is believed to be an extremely small electrical

pulse, the generation of which is inherit to the gage and electrical circuit configuration.)

Additional discussion of this instrumentation phenomenon is discussed in Section 4.9 of this

volume.

4.6.2.2 Biaxial Gaee Response. The biaxial gage line/load measurements compared well with

predicted values. The biaxial strain gage data for each station were used to calculate a stress

distribution; this information was used to calculate bending moments and axial force as a function

of time. Evaluation of the results shows that the maximum measured bending moment occurred
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on the LH SRB at Station 1797 during SSME buildup, reaching a maximum value of -264 x

108 in-lb. The axial force reached a maximum of -13.41 kip at Station 556 on the RH motor and

occurred at lift-off. The maximum line load was -28.0 kip/in., occurring at Station 556 on the RH

motor. Good correlation was found when the flight data were compared with the flight envelopes

and previous flight data.

4.6.3 Flight ResultsAssessment

4.6.3.1 Global Model Predictions and Meth0dolo_v. In most cases, actual test data were compared

to predicted values for each location. A detailed global model of the RSRM was used to predict

joint and case structural responses. This finite element model uses superelement techniques to

model all components of the RSRM in detail (except for the case-to-nozzle joint, which will be

discussed in Section 4.6.3.6 of this volume). Rockwell International load case L02044R was chosen

to represent the typical loading parameters that are imposed upon the RSRM during lift-off. This

load case includes a timespan from 0 to 10 sec, with SRB ignition occurring at approximately

6.5 sec, and is expected to predict displacement and strain values to within an order of magnitude

only. A detailed description of the model and analysis techniques used in predicting the structural

response of the motor is found in TWR-19197. The predictions included in the tables are ratioed

to the 360L003 pressure. The ratios were determined by multiplying the original prediction by the

ratio of the estimated 360L003 pressure to the predicted pressure. By using the ratio of the

predictions to 360L003 values, a more accurate comparison can be made.

The calculation of the pressure ratio works as follows: Maximum radial growth (and the

time at which it occurred), e.g., girth strain, for a particular location is found from test data. The

headend pressure at this time is next determined. Also, the predicted pressure drop (from

headend pressure) is found at this time. For 360L003, the predicted pressure drops were given in

TWR-19092. Therefore, the pressure ratio is:

headend pressure - predigted pressure drov = pressure ratio
predicted pressure

The percent difference between analysis and measured data is given by:

_pressure rati°x predicfi°n)" measured_ xl00measured

Biaxial strain gages were placed in the aft field joint, ETA ring regions, and around the

case-to-nozzle joints. These gages were used to calculate the corresponding hoop and axial stresses.

These stresses illustrate the effects of the ETA ring on the aft field joint and of vectoring on the

case-to-nozzle joint. The maximum experienced hoop stress and corresponding axial stress were
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compared to the predicted values. Since the hoop stress is much larger than axial stress, this

represents the maximum stress for each of the areas; thus, a SF can be determined.

The predictions (with the exception of those for the case-to-nozzle joint) are the maximum

expected values for the first 3 sec of flight. The maximum experienced axial and hoop stresses for

the duration of the flight were also tabulated.

The strain gages were zeroed after SRB stacking but before mating with the orbiter and ET,

so the strain gages report some initial strain before launch which is caused by the weight and

induced bending of the orbiter and ET. Because they were zeroed after stacking, the strain gages

do not show any strain resulting from the weight of the segments above them. However, it would

be ideal to know the actual strain experienced by the case at every instrumented location for every

flight event. After separation, and before chute deployment, the SRBs are essentially in a free

state (free fall), with very little (if any) motor pressure and very small external loads. For this

reason, all of the strain gages were adjusted to end at zero strain at this point in time. This

shifting of the data shows, as near as possible, the actual strain level at any point during flight.

Because the data are shifted at every time, it also shows the strain caused by the weight of the

case segments prior to SSME buildup. It should be noted, however, that when comparing strain

values with predicted values, the data have been adjusted to start at zero rather than end at zero.

The reason is that the predictions represent a delta change from the state before SSME ignition to

the state after full SRB motor pressure has been achieved. This is necessary to show a true

comparison with predictions.

Once these strain adjustments have been made, the strain values are input into program

SLB01, which calculates the stress distribution around the case. The output from this program is

put into program SLB06, which calculates bending moment and axial force.

The results of this program are presented as a function of time, and were also plotted with

previous flight data as a function of time and with the envelopes for specific flight events as a

function of station. The average line load for each is calculated using the bending moment in each

direction (MY and MZ) and the axial force (VX). The results are plotted as a function of time for

Stations 556.6, 876.5, 1196, 1466, 1501, and 1797.

4.6.3.2 Instrumentation. Girth and biaxial strain gages were placed on and close to the field and

case-to-nozzle joints to characterize joint performance. Following is a list of gages used and their

function.

• Joint girth gages--measure the average hoop strain for the entire 360-deg circumference. From

the hoop strain, radial deflections are determined from the product of measured (average) girth

strain and the nominal hardware radii at the corresponding gage location.
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• Biaxialgages--measurelocalaxialand hoop strain(ratherthan average)incurredinthe case

duringflight.From thesestrains,stresscan be calculated.

• Pressuretransducer--installedin the igniterto measure headend chamber pressure.

4.6.3.3FieldJointGirth Gage Performance. The instrumentationon both the LH and RH

RSRMs consisted of s/x g/rth gages per field joint. Tables 4.6-1 through 4.6.6 list the g/rth gage

response from 0 to 3 sac and the maximum strain for -10 through 120 sac for the forward, center,

and aft field joints for both the LH and RH motors. Tables 4.6.5 and 4.6-6 have a time range

from 0.6 to 3 sec because several of these gages show a spike before maximum headend pressure

(atabout 0.6 sac);adjustingthe predictionsatthispointgivesincorrectresults.

The above-mentionedtablesalsocompare the maximum measured strainand corresponding

radialgrowth with the predictedvaluesforthe forward,center,and aftfieldjoints.The results

show a good correlationbetween analysisand testdata. Allfieldjointpredictionsare within-19.3

percentofmeasured values.The maximum measured radialgrowth was 0.181in.,which occurred

on the centerfieldjointatLocation6 (Station1177.3)ofthe RH SRB.

Tables4.6-7through 4.6-9compare 360L003 with severalstaticmotors,360L001, 360L002,

and predictions.Itcan be seen from thesetablesthatthe correlationisgood. Closestudy ofthe

fieldjointgrowth behaviorshows thatthe jointisrotatingoutward,as can be seen from the

higherradialgrowth valuesat the forwardand aftends ofeachjointand the lower valuescloser

to the pin centerline.

The centerand aftfieldjointgirthgagesofthe RH SRB had spikesin the dataduringthe

ignitiontransient.There were a few othergageson both the LH and RH motor thatshowed

some degreeofspiking.Itisbelievedthatthisisan instrumentationproblem. The valuesin

Tables4.6-5and 4.6-6(centerand aftfieldjoints,respectively)containthe maximum valuesfound

afterthe data spikingoccurred(after0.6to 3.0 sec)and the maximum valuefound forthe full

time duration(timerange of-10 to 120 sac).

Another interestingevent occurredon the forward(allgages)and center(threemost

forwardgages)ofthe RH SRB. In thesegagestherewas a time delayofapproximately0.25sec

beforethesegagesshowed an increasein magnitude. A girthgage isnormallylinearwith

pressure,but theseshow no responseuntilthe headend pressureisapproximately600 psi. Itis

alsoofsignificanceto notethatthe biaxialgages inthe membrane justaftofeach ofthesejoints

respond normally,with no time delay.The centerfieldjointisthe most interestingofallsince

threeofthe girthgagesshow a time delay,two gagesshow spiking,and one gage isbad. Allof

thesegagesexperiencedthe same motor pressurebut respondeddifferently.For thesereasonsit

isbelievedthatthe datadelaysare the resultofan instrumentationproblem. Additional

discussionof the instrumentationiscontainedin Sect/on4.9ofthisvolume.
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It is recommended that the cases which had the spiking gages be inspected during

refurbishment for out of roundness, case thickness, and any other abnormalities. It is also

recommended that, during the hydrotest, a series of girth and biaxial gages be installed to measure

case strain. Since this phenomenon is not completely understood, it is also recommended that DFI

be installed on future flights to help determine positively that this is not a real event. These are

the same recommendations given for flight set 360L002.

4.6.3.4 Case Membrane Girth Ga_e Resvonse. Flight set 360L003 instrumentation on both the

LH and KH RSRMs consisted of seven girth gages on the case membrane. Tables 4.6-10 and 4.6-

11 list the girth gage response from 0 to 3 sec and compare the measured strain and calculated

radial growth with predicted values. (These predicted values are for the first 3 sec only.) Every

prediction is within -13.3 percent of the measured test data. Also listed is the maximum radial

growth for -10 to 120 sec. The maximum girth strains for the duration of the flight are slightly

larger than those found from 0 to 3 sec. The maximum radial growth occurred at Station 611.5

on the LH SRB and has a value of 0.279 inch.

Table 4.6-12 shows the comparison of 360L003 with several static tests, 360L001, 360L002,

and predictions (from -10 to 120 soc). This table shows a good correlation with these tests. The

values for Station 1637.5 (Location 7) exclude the spiking event (discussed in Section 4.6.3.3 of this

volume).

4.6.3.5 Case Biaxia] Stresses (Case Line Loads, Aft Field/ETA Joint). The 360L003

instrumentation consisted of biaxial gages at seven locations along the case (four pairs at

Stations 556.5, 876.5, 1196.5, 1466, and 1797 and nine pairs at Stations 1497 and 1501).

Tables 4.6-13 and 4.6-14 illustrate the hoop and axial strain values with their corresponding

predictions for the first 3 sec of flight. These tables show a good correlation between measured

and predicted values, with the exception of Station 1330 in the axial direction. This station is

located on the outer leg of the clevis and forward of the pins. This location is not as constrained

as other areas on the joint, so the behavior is different and less predictable--especially in the axial

direction.

Table 4.6-15 lists the maximum hoop and axial stresses measured from biaxial gages for the

total 120-sec burn time. These tables do not provide a comparison between test data and analysis.

An analysis was performed for the initial 3-sec burn time only, which does not necessarily

correspond to maximum stress occurrence. The maximum measured hoop stress occurred at

Station 670 at 98 deg on the RH SRB, measuring a local stress of 137.4 ksi. The ultimate

strength of D6AC steel is 214 ksi with biaxial improvement. The maximum measured hoop stress

results in a SF of 1.56 with the ultimate strength. The yield strength of D6AC steel is 180 ksi.

Therefore, no local yielding was measured in this area.

REVISION oocNO.TWR-17542-1 I VOL

SEC I PAGE 73

89857-3.8



-- MORTON THIOKOL INC

Space Operations

0

c"d

r,.)

d
H

0 0

H

** H H

REVISION

CJ_

0

I

v

H

U')

¢'_ fxl fxl

c; c; ,=; c; ,=; ,=; c;

I I _ I
I I

c; ,:; (:; (:; (:; c;

I"_ ,.-.4 _ '_P _ P1

o o o 0 0 o 0

o o o ¢3 o i_, 0

,_ M M M ,_ ,,-; ,--;

_D I_- 0 _, 0 _ _ _0

I_ _ I"_ I"_ I"_ I'_.' r"-.
0 O O O O O L_
co oO cO oO oO oO _0
0 O 0 O o o 0

OOCNO. TWR-17542-1 I voL

SEC I PAGE 74



-- MORTON THIOKOL INC

/
J

Space Operations

I.D

0

I-i

0

H
01

(3 0

I-I

b

m

REVISION

7
II

4

"I

DI

-_

--|

,-_,

a,'!

T.

"!

g

I

(3

I

°

H

0

,--I ,-I I ,-4 ,.--I I

I I I I

(3 ,:; _ (3 (:; _;

I'_ i--I n'l _ Z (3 (3

I_ 1._ ',.D _0 I._ U"I

(3 (3 (3 (3 (3 (3 (3

._ _ ,4 ,-; .4 ,_ r-:
•-4 _ _ _ U'_ ,.-.4 _'_

_ _ _ _ _ _ _
CO CO ¢0 CO CO CO CO

(3 (3:3 (3 (3 (3 0 (3
rn _ nn -_ en

DOCNO TWR-17542-1 I voL

sEc I PAGE 75



-- MORTON THIOKOL INC

Space Operations

co

o '--......¢.O
co

D,,

o
r_

r_
c'.J

o

I.,,

r..9

o_

o4.1

O
rj

.,,..4
1.4

v-i

O

,-i

.el

1,4

0J
I/3

U

REVISION

II

I

I-.4

r"-

.-4

I.L]

I

I,-4

7_

I

.,..4
O

$I I L_

_ •
_ 0

_ r_

o o

¢'1

r_

'2. .

0

i_ r _

o o

o _

fq _,1

o o

i_ _o

o o

r -_ i.n

o o

_ r _

cO 00

m m

,-i (-,4

DOC NO

SEC

,q,

r',-

oo

_D

r--

o

0.

oO
k.D
r'.l

CO
rio
('4

0

O0
u")
("-,,I

0

CO
UF1
r'4

0

O0

CO
0
m

t._

O O

p.. r._

u'l I "_
P,I P,I
("4 P4

o o

o

0

m

eq
t

0

_ m

¢N _,1

0 0

0

0

o

("4 f,l

0 0

¢_I f-I

0 0

0 0

tl0 I_

,,..4

U

_ U

_o

ii°-,,-4
-el

O.el

o._ -,-4 .,,-4

.7i 
I"'-

TWR-17542-1 I v°_

I F'AGE 76



MORTON THIOKOL INC

Space Operations

>

t
.,=4

n
>

.a=q

t,d

_S
o

o

Ms
"_a

,4

A • •

I

0000 0000 0000 0000 0000 0000

.,-q

v

4J oO_OkO(O O0_DI'-kO oOookooO 0030U3 U'_,-;_O_ O0 Ch,.-_tO

C_

0
0

-,4 _OqO_O (_0_0_ _O_OGO_ _O_OGO_O _O_OCOGO CO(X:_CO_

_O(_GOGO _O_GO GO(_GO_ _O_:_(X) GO_GOGO _OGO_O
0000 0000 0000 0000 OOCDO 0000

iL o
.0 tF_ 0 U3 •

e._ E = ,= E E ,= = E tO-" "- -" 0"- = E

tO 0 _D O_ rq

tD tO _ _-; ,-I

0

M:)= = -"
_D

REVISION
ooc NO TWR-17542-1 I VOL

77SEC I PAGE



L
MORTON THIOKOL INC.

Space Operations

.i-I
\

_t

N

_ °e,-I

_ _" .,_

iNm m

"_o o0

_ -,-_
_ N

_o_

000000000

gd_g_2_X

000_00000

ooooooooo

g_dgd_g_d

__oo

ooooooooo

__0_

__oo

ooooooooo

• ,00,eo_o_o_o

0000

000_

o,te
0_00

o o o

v..4E E E E - _ e. _

o

r---= = =

REVISION
ooc.o TWR-17542-1 I rot

SEC I PAGE 78



-- MORTON THIOKOL INC

Space Operations

:>

r_

L,

:>
"o

0,._
"o

L.

o
I= "-"

._ ..q

,4

°r4

.,.4

v

°il

.r'4

E

-rt

v

-_1

U
_J_ ._

0
0 I_

1o_
N

• el

_o_

0000

0000

oe

0000

oooo

<<<<

0000

0000

0000

oooo

oeeo

lie

0000

oooo

ele

eee

0000

0000

oe*o
0_00

• ee

II_
II

0000

oooo

toe

l.ll_l.f'l_DO
f,_lc_.,]r,4("_

0000

oooo

ee*e
o_oo

0000

0000

_r.-tt-I_"_(xl

0000

0000

0eo

_0===
IJ')

I.n
ell e, I:

M_

CO

_0" = =
Oh
,'-I

0

0.. _. ,e,

0

_D= " =
_0

REVISION
oocN0 TWR-17542-1
SEC

I PAGE

I VOL

79



L

MOmON THIOI_,OL INC

Space Operations

r.D

"a

_8

0

0 ,-,

,4

.,,,4

-i-t

v

°iJ
-r.I

._.,f

•,-4 0J

U
.IJ .,-I

0 _

0

.,..t

iw

000000000

000_00000

000000000

000000000

000000000

00000_000

000000000

• o_ • • eoolo

000_

0000

0000

_0e0

0000

0000

o o
0

0

REViSiON ooc_o TWR-17542-1 J rot

$EC [ PAGE 80



- MOATON THJOKOL INC

Space Operations

"0

0

m

4

I--4

_b

E_

I-I

rd3 v

•r.I 1-1

H
U'J

,-1

r-I
nJ

0

XX

.m

t.

m

o_o

I

• . _._ ...... _ • .

IIII _;_ ....
! !

_0_ IIII

0 0

REVISION ooc_o TWR-17542-1 I v0[

SEC I PAGE 81



MORTON THIOKOL INC

Space Operations

o

r_

,9

t_
t_

t_

[.-,

0
U

_m

"_0__0

1
m

_o_ 0

XX

0

m

__0_

0

_., _,_,_

_ "_ •.

_ ...

O O

0 _ _" " _" _" • = I_ _'_ I_ "_ _"
_r_ r_

REVISION ooc.o. TWR-17542-1 Ivo_

sec I _oe 82



MORTON THIOKOL INC

SpaceOperations

4.6.3.6 Cas_-t_-Nozzl_ JQint Performance. Instrumentation on the case-to-nozzle joint consisted of

six girth gages and two stations of biaxial gages. Test results at these locations are compared to

analytical results acquired from a 3-D finite element analyam. The analysis was performed with

the finite element code ANSYS using a 1.6-deg model of the caee-to-nozzle joint. Near the joint

region the model was 3-D, transitioning to two dimensional (2-D) away from the joint. The

following assumptions and parameters were included in the model:

a. Nominal values for material properties and hardware dimensions

b. Preload of 140 kip in the axial bolts and 47 kip in the radial bolts

c. Internal pressure of 920 psig applied up to the backside of the primary O-ring groove

d. Frictionless joint behavior

e. Zero vectoring nozzle condition

f. Propellant and insulation were not modeled

Because the model is cyclic-symmetric, any circumferential variation indicated by the test

data will not be taken into accounL The analysis was performed at 920 psig, and was linearly

scaled to the estimated nozzle stagnation pressure, which involves approximately 5-percent error

due to the nonlinear analysis.

Case-to-Nozzle Joint Girth Gages. Radial deflection is an important parameter to characterize

since it is proportional to joint hoop stress. Tables 4.6-16 and 4.6-17 list the girth gage response

during the flight and compare it to analysis. These tables show a good correlation with predicted

values, with the exception of gage B08G8314, which is at Station 1875.5 on the RH SRB. The

percent difference for this gage is 41 percent. The percent difference for the other gages ranges

from 8.3 to 26.1. As expected, calculated radial growths indicated a prying open action and

outward rotation of the joint. The maximum radial growth was 0.101 in. and occurred at

Location 4 (Station 1875.5) on the LH SRB. Table 4.6-18 compares 360L003, several static test

motors, 360L001, 360L002, and predictions. The correlation with 360L001 and 360L002 is very

good and is slightly lower than with static motors.

Case-to-Nozzle Joint Biaxial Strain Gag_. The case-to-nozzle biaxials measure local rather than

average strains. Tables 4.6-19 and 4.6-20 show the maximum hoop stress value for the duration of

the test (-10 to 120 sec). The maximum stress occurred in the hoop direction at Location 1 (90

deg on the RH SRB) and had a value of 66.6 ksi. This gives a SF of 3.21 with the ultimate

strength. Tables 4.6-21 and 4.6-22 show a comparison with predicted values between -10 and

120 sec. The hoop direction compares very closely but the axial is somewhat off. Previous static

fire tests have shown that the case-to-nozzle joint gages do not compare as well to analytical data

in the meridional direction a8 in the hoop direction. Several possible reasons for this are:
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a. Some gages are located in the neck of the fixed housing, where the 3-D model grid may not be

fine enough to accurately predict drcumferential strain.

b. Analytical data were linearly scaled to the test datL

c. Nozzle stagnation pressure was estimated to be 824 psig at 20 sec but was not measured.

d. Nominal materials were used for the finite element model.

4.6.3.7 Moment, Shear, and Strut Forces. Six stations along the full length of the SRM contained

biaxial strain gages at four locations around the drcumference (approximately 90 deg apart). From

these, a stress plane at each station is generated; from the _xess plane the Y and X axis bending

moments and axial loads are computed. These results will be compared to both previous flights

and predicted loads at all significant operational periods, including prelaunch, buildup, lift-off,

shuttle roll maneuver, maximum acceleration, maximum dynamic pressure, and separation.

Bending About the Y Axis (MY). Figures 4.6-1 through 4.6-6 show the bending about the Y axis

at both the LH and RH motors for Stations 556, 876, 1466, 1501, and 1797, respectively. Initially,

the case is seen to be bending in the plus Y direction, which is caused by the orbiter weight. The

magnitude increases linearly going down the case toward the hold-down point. During SSME

buildup, every station experiences a change from positive to negative bending as the assembly

bends over. The maximum value was -264 x 106 in.-lb at Station 1797 on the LH SRB

(Figure 4.6-6). This value compares well with the design maximum of -304 x 106 in.-lb. Upon lift-

off, the values reduce significantly, coming beck to nearly zero for every station. During the

shuttle roll maneuver, the LH SRB experiences an increase in bending, while the RH SRB

experiences a decrease. This is because the nozzles are vectoring to cause the roll, the change of

the LH and RH SRBs is opposite for the same reason. From this point on, the data are not very

interesting and find their way to zero. The large spike seen at approximately 124 sec occurs at

separation and is typical of other flights.

Figures 4.6-7 through 4.6-23 are plots of the first three flights (STS-1, STS-2, and STS-3),

and the first three RSRM flights (360L001, 360L002, and 360L003). As shown in the figures, the

correlation is very good. From these plots it can be seen that the roll maneuver of 360L003 is not

similar to 360L001. The only notable difference is at Station 556 on the LH SRB. 360L001 is

significantly higher and follows a different path than 360L002 and 360L003. (Data for 360L001 at

Stations 556 and 876 on the RH motor are not included due to bad results.) Also, there was not

instrumentation on the LH SRB near Station 556 for the first three flights, so no comparison can

be made there either.

Bending Ab.out the Z Axis (MZ). Figures 4.6-24 through 4.6-29 show the bending about the Z axis

for both the LH and RH motors for Stations 556, 876, 1196, 1466, 1501, and 1797, respectively.
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Initially, the tops of the motors are seen to be bending in toward the ET due to the weight of the

ET and orbiter. Moving down the motor, the bending increases slightly for both motors at Station

876, then both values reduce to approximately the same value at Station 1196, changing sign at

Station 1466 as expected. At Station 1797, it changes back to the same sign as at the top of the

motor, as expected. Upon lift-off_ the tops of the SRBs are moving toward the ET, and the

bottoms of the SRBs are moving away from the ET. During the roll maneuver, Stations 1196 and

1466 show the same peaks as bending about the Y axis, with the exception that both the LH and

RH motors move in the same direction. This is due to the sign convention. During the first

phase of the roll, the LH motor is pushing away from the ET, and the RH motor is pushing

toward the ET.

The opposite is true of the second part of the roll maneuver. Station 1797 is different from

the other stations because after lift-off it follows a fairly linear path back to zero during the flight.

Figures 4.6-30 through 4.6-46 are plots of the first three flights and the first three RSRM

flights as a function of time. As shown in the figures, the overall correlation is very good. Station

556 of 360L003 shows a much lower magnitude than 360L001 and 360L002 on both the LH and

RH motors. Station 1466 of 360L003 shows a higher magnitude than the other flights.

Comparisons at the other stations show a close correlation.

Axial Force, X Axis (VX). Figures 4.6-47 through 4.6-52 show the axial force for both the LH and

RH motors for Stations 556, 876, 1196, 1466, 1501, 1797, respectively. In these figures, a positive

value represents a compressive force and a negative value represents a tensile force. Initially the

SRBs are subjected to the weight of the ET, orbiter, and segments above the particular station.

Since these are the only forces acting axially, the result should increase linearly proceeding down

the case. Station 1501 shows a slight decrease in measured strain due to the increased case

thickness in this region. Upon SRB ignition, the cases immediately go into tension as the motors

pressurize and lift off. The maximum value was 13,408 kip and occurred at Station 556.5 of the

RH motor. After this point, the shape of the plot looks like the motor pressure plots. There is

good agreement between the LH and RH motors. Some of the difference can be attributed to the

fact that the gages were zeroed at the end of the flight, and the actual strain values experienced by

the LH and RH motors, and each station, were probably not exactly zero.

Figures 4.6-53 through 4.6-69 are plots of the first three flight (STS-], STS-2, and STS-3)

and the first three RSRM flights (360L001, 360L002, and 360L003). As shown in the figures, the

shapes of the curves are very similar. The higher magnitudes of 360L001, 360L002, and 360L003

can be explained by the fact that the redesigned boosters are HPMs and obtain a higher operating

pressure than the older motors. The comparison between 360L001, 360L002, and 360L003 is very

good.
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4.6.3.8 Line Loads. Using the bending moment and axial force data, the average line loads were

calculated. Figures 4.6-70 through 4.6-75 show the line load as a function of time. These figures

show a curve shape similar to axial force but with a different mal_tude. The method of

calculation of this line load produces only an average value around the ease, so they are not

directly comparable to maximum design line loads.

4.6.3.9 Strut Force_. Figures 4.6-76 and 4.6-77 show the resultant strut force in the Y and Z

directions, respectively. The LH and RH motors are mirror images of each other in the resultant

Y force direction. The RH SRB shows a positive value while the LH SRB shows a negative value.

4.6.3.10 Flight .Envelopes. The bending moments and axial force experienced by 360L003 that

were not within the envelopes were only slightly out. The following are some possible reasons

why all of the loading did not fall within the envelopes.

1. Several strain gages went into the calculation of each load, and every gage has an uncertainty

associated with the gage itself, plus some drift in each gage during the flight.

2. Adjusting the strain data to end at zero adds some uncertainty, since the exact strain

experienced during free fall is not known.

3. The program calculates a linear stress distribution from the strain data, and the case does not

necessarily behave linearly during flight. It should be noted that the data compare favorably

with previous flight data, as expected. The time ranges used to find the maximum and

minimum values for each event are defined in the table below.

FliRht Event Time Ran2e

Prelannch -15.0 to -7.0

Buildup -1.6 to -0.8

Lift-off 0.0 to 4.0

Roll Maneuver 5.0 to 22.0

Max Q 27.0 to 76.0

MaxG 72.0 to 90.0

Preseparation 119.0 to 124.0

4.6.3.11 Bending About the Y AxiS. Figures 4.6-78 through 4.6-91 are plots of the maximum and

minimum values for 360L003 and the envelopes for specific flight events. These plots show that

the data fit the envelopes quite well. Those stations that do fall outside the envelope are of a

relatively small magnitude.

4.6.3.12 Bending About th¢ Z Axis. Figures 4.6-92 through 4.6-105 are plots of the maximum and

minimum values for 360L003 and the envelopes for specific flight events. These plots show that
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the data follow the correct trend and are quite close to the envelopes. The tops and bottoms of

the SRBs (Stations 556.5 and 1797, respectively) are the most outside of the envelopes.

4.6.3.13 Axial Force. Figures 4.6-106 through 4.6-119 are the axial force envelopes and the

360L003 data plotted as a function of station. These data are near the envelopes.

4.7 RSRM STRUCTURAL DYNAMICS (FEWG REPORT SECTION 2.6.2)

4.7.1 Introduction

Accelerometer data were evaluated to understand the SRM vibration level and frequency, and to

verify predicted behavior of the preflight, lift-off, and flight envelopes. Tables 4.7-1 and 4.7-2 list

the aecelerometers used for data acquisition. Data from 360L003A (LH) (about 290 to 350 sec)

were lost during Max Q reentry due to a recording system malfunction. Three channels were also

bad (Table 4.7-1). Consequently, the number of available channels used for the RH and LH SRB

dynamic evaluation was 17 and 16, respectively.

4.7.2 Vibration Amplitudes

The time history data were plotted using a sample rate of 320 sps. Generally, during SRM burn

the vibration in the nozzle area is higher than that in the case, which was expected and is normal.

As compared with 360L002 (STS-27), 360L003 (STS-29) has generally higher vibration amplitudes.

For example, Channel B08DS175A (Station 839, axial direction) experiences a 12g amplitude. In

the radial direction, the high-amplitude (5g) vibrations observed in 360L002 were exceeded by the

recorded data for 360L003 and measured 8g, as shown in the B08D8166A and B08D7166A time

history plots (Figures 4.7-1 and 4.7-2).

The dominant vibration frequency is 200 to 300 Hz for data from 0 to 1 sec after SRB

ignition. This dominant frequency occurred for almost every channel, and the peak amplitudes of

vibration occurred at approximately 0.2 to 0.4 sec (which is before the internal pressure is fully

established). The resulting effects of these high-amplitude vibrations on the SRB, such as stress

level, high cycle fatigue, etc., are still under investigation.

Time history plots were also used to identify the SRB loading events during reentry and can

be seen in Figures 4.7-1 through 4.7-36. It is important to observe that, during reentry, the SRB

is subjected to another extremely severe loading environment--Max Q reentry, which occurred from

300 to 340 sec. During this time period, the vibration level exceeded the 15g measurement limit.

Not only is the vibration amplitude high, but the vibration duration is also long during this severe

loading environment. The frequency content for Max Q reentry was computed to be flat-ranged

from 10 to 200 Hz, which is very typical for white-type aerodynamic wind loads. The possible

effects of Max Q reentry on the SRB (such as fretting) are still under investigation.
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Figure 4.6-111. 360L003 Axial Force-Lift-off Envelope (RH motor)
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Figure 4.6-112. 360L003 Azial Force-Roll Envelope (LH motor)
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Figure 4.6-116. 360L003 Axial Force-Max Q Envelope (LH motor)
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Figure 4.6-117. 360L003 Axial Force-Max Q Envelope (RH motor)

REVISION ooc NO, TWR-17542-1 J voL
sEc I PAaE 154



MORTON THIOKO[. INC.

Space Operations

500

Q-

v - 500 .-

(..3

O
i,

- I000 "
J

X
<

- 1500 -

- ZOO0

IOOO

-lO00-

L_J

0

..J

-5ooo
x

-4000

- 5000

"---I

I

t

I

600

Figure 4.6-118.

MAX ENVELOPE

MIN ENVELOPE

--- MAX ACTUAL

--- MIN ACTUAL

I I I I I I

800 1000 1200 14-00 1600 1800

STATION (INCHES)

360L003 Axial Force--Prestaging Envelope (LH motor)

!

I

600

Figure 4.6-119.

ii
I I I I I

800 1000 1200 1400 1600

STATION (INCHES)

360L003 Axial Foree--Prestaging Envelope (RH motor)

MAX ENVELOPE

MIN ENVELOPE -

-- - MAX ACTUAL

--- MIN ACTUAL

'i
1800

REVISION DocNO. TWR-17542-1 [ voL

sec I pAQe 15,5



MORTONTHIOKOLINC.

Space Operations

Table 4.7-1. Maximum Accelerations (LH motor)

B08D7160A
B08D7161A
B08D7162A

B08D7175A
B08D7176A

B08D7164A
B08D7165A
B08D7166A

B08D7177A
B08D7178A
B08D7179A

B08D7167A
B 08D 7168A
B08D7169A

B08D7171A
B08D7172A
B08D7173A
B08D8174A

Station.

500.0
500.0
500.0

1159.5
1159.5
1159.5

1479.5
1479.5
1479.5

1829.5
1829.5
1829.5

1923
1923
1923
1923

Location
(de2)

0
0
0

0
0

0
0
0

0
0

180

0
0
0

270
270
270

90

Direction

Axial

Tang
Radial

Axial

Tang

Axial

Tang
Radial

Axial

Tang

Tang

Axial

Tang
Radial

Axial

Tang
Radial
Tang

Peak Acceleration
From NASTRAN

0.9
1.2
0.7

0.9
1.1

0.8
1.1
0.6

1.0
1.0
0.9

1.3
1.2
0.6

NA
NA
NA
NA

Peak Acceleration
From STS-29

(filter40 Hz)

0.51
0.27
0.33

0.66
0.98

0.21
0.15
1.90

0.27
0.25
0.50

0.85
0.84
0.29

3.60
Bad gage
Bad gage
0.23

Peak Acceleration
From STS-29

(filter160 Hz)

1.8
0.8
5.2

2.0
3.8

1.5
1.8
5.0

1.3
1.5
2.0

4.2
1.5
4.8

9.5
Bad gage
Bad gage
3.8
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Table 4.7-2. Maximum Accelerations (RH motor)

_q ge

B08D8160A
B08D8161A
B08D8163A

B08D8175A
B08D8176A

B08D8164A
B08D8165A
B08D8166A

B08D8177A
B08D8178A
B08D8179A

B08D8167A
B08D8168A
B08D8170A

B08D8171A
B08D8172A
B08D8173A
B08D8174A

Station

500.0
500.0
500.0

839.5
839.5

1159.5
1159.5
1159.5

1479.5
1479.5
1479.5

1829.5
1829.5
1829.5

1923
1923
1923
1923

Location
(tieR)

0
0

180

0
0

180

0
0

180

90
9O
90

270

Direction

Axial

Tang

Tang

Axial

Tang

Axial

Tang
Radial

Axial

Tang
Tang

Axial

Tang
Radial

Axial

Tang
Radial

Tang

Peak Acceleration
From NASTRAN
Prediction (2)

0.9
1.3
1.2

0.8
0.8

0.8
0.8
0.6

1.0
0.9
1.0

1.3
1.0
0.6

NA

NA

NA

NA

Peak Acceleration

From STS-29

(filter40 Hz)

0.22
0.26

0.31

9.00
0.21

0.31
1.00

2.00

0.33
0.84
0.31

0.73
0.88
0.38

2.90
1.40
8.60

Bad gage

Peak Acceleration

From STS-29

(filter 160 Hz)

1.5
0.5
2.0

12.0

2.5

1.0
11.0

7.5

2.0
4.0
1.8

4.1
1.8
4.0

1.0

4.0

9.0

Bad gage
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Figure 4.7-34. Acceleration Time History (Gage B08D8177A)
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Figure 4.7-35. Acceleration Time History (Gage B08Dg178A)
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Another important loading event is water impact. Accelerometer data can be used directly

to estimate the shock loading during impact. Currently, this task is also in work.

4.7.3 Predicted Versus Actual Results

To compare the predicted and measured results, the accelerometer data from 0 to 5 sec were

selected (the analytical model used for the predictions is valid only for the first few seconds after

ignition). These data were then filtered at 40 Hz (which is the cutoff frequency of the residual

modes of the NASTRAN analytical finite element model). The predictions at the nozzle area are

not available, since the finite element model resolution is not fine enough in this region to make

accurate predictions. The available prediction results were compared with the measured 360L003

(STS-29) values and are presented in Tables 4.7-1 and 4.7-2.

In reading Table 4.7-1, it must be realized that the NASTRAN model acceleration

predictions include the rigid body accelerations, while the accelerometer gages cannot detect this

low-frequency dc movement. In addition, the force values used in the prediction model are

preflight predicted values from previous experiences. These values are not accurate when the

loading environment is random. Further comparisons will be made when the updated forces

(reconstructed loads) are available and will be included in Volume XI of this report.

4.7.4 Modal Frequencies

To identify the modes of SRM structural vibration, the method of discrete Fourier transform (FT)

is used. This method selects the data from a short time period (such as 2 sec) and performs the

fast Fourier transform (FFT). The resulting frequency spectra are plotted in a stacking manner

for different time periods to form a waterfall plot. The waterfall plots for each channel are shown

in Figures 4.7-37 through 4.7-68. If the excitation sources are wide-band noises, the discrete FT

willshow the characteristicssimilarto thatoftransferfunction.

Itisbelievedthatthe frequencyofthe SRB modes duringburn willincreasewith time due

tothe decreasingofmass. However, evaluationofthe waterfallplotsfrom flightdata,unlikethose

from staticfiring,does not shown such increasingfrequencytrends. Thiswas alsoexperiencedon

360L002 (STS-27R). (Motorset360L001 (STS-26R) did not have enough instrumentationto

evaluatethis.)Afterevaluationofthe accelerometerdata from 360L002 and 360L003,itis

concludedthatidentifyingthe SRM modal frequenciesusingonlyaccelerometerdataisextremely

difficult.

4.7.5 Conclusionsand Recommendations

The dynamic datafrom 360L002 and 360L003 (flightsSTS-27 and STS-29),unlikethe staticfiring

data,show some degreeofunpredictability.For example,360L002 (STS-27R) showed unpredicted

high amplitudesofvibrationin the radialdirectionduringthe ignitiontransient(measured on

STS-27 Channels B08D8166A and B08D7166A). For STS-29, 12g ofvibrationunder 160 Hz isalso
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Figure 4.7-37. Random Decrement Waterfall Plot (Gage B08DT160)
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Figure 4.7-38. Random Decrement Waterfall Plot (Gage B08DT161)
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Figure 4.7-40. Random Decrement Waterfall Plot (Gage B08D7164)
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Figure 4.7-42. Random Decrement Waterfall Plot (Gage B08D7166)
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Figure 4.7-44. Random Decrement WaterfallPlot(Gage B08D7168)
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Figure 4.7-45. Random Decrement Waterfall Plot (Gage B08D7169)
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Figure 4.7-46. Random Decrement Waterfall Plot (Gage B08D7171)
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Figure 4.7-48. Random Decrement Waterfall Plot (Gage B08D7175)
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Figure 4.7-49. Random Decrement Waterfall Plot (Gage B08D7176)
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Figure 4.7-50. Random Decrement WaterfallPlot(Gage B08D7177)
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Figure 4.7-52. Random Decrement Waterfall Plot (Gage B08D7179)
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SDRC I-DEQS 4.9: Test Data QnotLjsis 12-QPR-eg 12:53:53
tJI11TS : IN

0ATR|RSE; STS_g 01fIR (U_EI_FALt)
VIEU

REVISION

Figure 4.7-54. Random Decrement Waterfall Plot (Gage B08D8161)
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Figure 4.7-56. Random Decrement WaterfallPlot(Gage B08D8164)
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Figure 4.7-58. Random Decrement Waterfall Plot (Gage B08D8166)
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Figure4.7-60.Random Decrement WaterfallPlot(Gage B08D8168)
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4.8: Test Data Analysis

Figure 4.7-61. Random Decrement Waterfall Plot (Gage B08D8170)
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Figure 4.7-62. Random Decrement WaterfallPlot(Gage B08D8171)
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Figure 4.7-63. Random Decrement Waterfall Plot (Gage B08D8172)
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Figure 4.7-64. Random Decrement Waterfall Plot (Gage B08D8173)
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Figure 4.7-65. Random Decrement Waterfall Plot (Gage B08D8175)
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Figure 4.7-66. Random Decrement Waterfall Plot (Gage B08D8176)
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Figure 4.7-68. Random Decrement Waterfall Plot (Gage B08D8179)
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observed for some other channels (B08D8175A, Station 839.5, axial) in addition to the large radial

direction vibration amplitudes. Analytical models cannot predict such short-duration, high-

amplitude vibrations.

Additional confidence and knowledge must be gained through more measurements and

analyses. The current data bank for flight dynamic data is limited to two flights (STS-27 and

STS-29). STS-1 through STS-6 did not have adequate measurements in the center area of the

SRB--the area where extreme vibration was observed on STS-27 and STS-29. It is recommended

that accelerometers be mounted at or near the center area on at least four additional flights to

monitor and further understand the SRB vibrations.
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4.8 RSRM TEMPERATURE AND TPS PERFORMANCE (FEWG REPORT SECTION 2.8.2)

4.8.1 Introduction

This section documents the thermal performance of the 360L003 (STS-29R) SRM external

components and TPS as determined by posttlight hardware inspection. Assessments of DFI, mean

bulk temperature predictions, on-pad ambient/local induced environments, LCC, and GEI/joint

heater sensor/thermal imaging data have also been included. Performance of SRM internal

components (insulation, case components, seals, and nozzles) is reported in Section 4.11 of this

volume.

4.8.2 Summa .ry

4.8.2.1 Postfli_ht Hardware Insvection. Postflight inspection revealed no unexpected problems

resulting from fight heating environments. The condition of both SRMs was similar to that of

previous flight motors. A complete external heating evaluation of postflight hardware is given in

Section 4.8.3.1 of this volume. Nozzle erosion is discussed in Section 4.11.4 of this volume.

4.8.2.2 DFI Thermal Data Evaluation. For the most part, DFI thermal data were well within the

estimated values derived from worst-case Integrated Vehicle Baseline Configuration-3 (IVBC-3)

design tr_ectory analyses. Design estimates were exceeded on two different locations within the

SRB aftskirtbase region(bothSRM nozzlethroatsteelhousingsand both SRM nozzleaftexit

cone aluminum shells).A completeDFI thermal dataevaluationisgivenin Section4.8.3.2ofthis

volume. A summary ofthe two locationswhere designestimateswere exceededfollows.

Nozzle Throat. Similarto STS-27R DFI response,measured dataon the nozzlethroatexceeded

the designestimateby a few degrees.The responsewas not due to internalsoakoutheating

through the nozzleablatives.Temperatures decreasedduringlatereentryinsteadof continually

increasinguntilsplashdown,as would be evidentofinternalsoakoutheating.The higherresponse

isattributedtothe factthatthereare some minor reentryheatingeffectswithinthisinnernozzle

regionforward ofthe nozzlesnubber. Presentexternalheatingdesignenvironmentsare not

definedforthisregion.Thisoccurrenceappearsnot tobe a problem,sinceactualhardware

response is still well within the general reuse temperature criteria of a steel structure (500°F as

reported in the SRB Thermal Design Data Book, SE-019:068-2H).

NozzleAft ExitConf. Measured dataon the aftexitcone exceededthe designestimateby as

much as 73°F (reaching295°F)foran approximate100-eecperiodup to splashdown. A probable

explanationisthatadditionalheatingwas impartedto the components in the base regiondue to

bydrazinefires,which have alsooccurredin some of the pastflights.

The additionalheatingfrom thishydrazinefirephenomenon isnot accountedforin present

externalheatingdesignenvironments. The occurrenceofhydrazinefirescan onlybe confirmedby
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the instrumentation installed by USBI on the hydrazine tubes supplying the fuel to the auxiliary

power units (APU) within the base region. General reuse temperature criteria of an aluminum

structure is 300°F as reported in the SRB Thermal Design Data Book (SE-019-068-2H). The

appropriate reuse criteria will be evaluated concerning this hardware.

4.8.2.3 Mean Bulk Temperatur_ Predictions. A discussion of day of launch predictions, made at

different timeframes, is presented in Section 4.8.3.3 of this volume. Final postfiight predictions

from reconstructed data are as follows:

1. The PMBT was 6TF.

2. The flex bearing mean bulk temperature (FBMBT) was 74°F.

4.8.2.4 On-Pad Environment Evaluations. A complete environment evaluation is given in

Section 4.8.3.4 of this volume. A summary of key observations follows.

Ambient Conditions. Ambient temperature data (47" to 78°F) exceeded the range of the average

March historical data (61+ to 73°F), the lower or cooler side showing the most deviation. Cooler

than average temperatures, representative of the March historical -1 sigma value, were also evident

during the final 12 hr prior to launch. Windspeeds were high (reaching 30 kn) a couple of days

prior to launch but were within the historical average the day of launch.

SRM Local. The local prelaunch environment due to March historical predictions suggested as

much as a IOF temperature suppression while the ET was loaded for winds from the southeast

direction. Actual winds were consistently from the southwest by west direction. After assessing

GEI, there was no apparent evidence of extreme temperature suppression due to ET cooling

effects--only minor 1° to 2"F chilling on the inboard region of the RH SRM.

4.8.2.5 Launch Commit Criteri_ No LCC thermal violations were noted. Measured GEI and

heater sensor data, as compared to the LCC requirements, are discussed in Section 4.8.3.5 of this

volume. Highlights of heating operations are summarized below.

.Igniter Joint. The heaters performed as expected, with cooldown occurring over an approximate

8-hr period. During this period the temperature dropped from 99"F (T - 4 hr) to 70°F

(T - 5 rain).

Field Joint. Five of the six field joint heaters performed adequately and as expected. However,

the RH aft field joint primary heater circuit failed at approximately T - 10 hr. The operations and

maintenance requirements and specification document (OMRSD) maximum heater current limit of

19.5 amp was exceeded and a waiver was approved. The secondary heater circuit was initiated

and performed nominally for the remainder of the countdown. Additional information on the

heater failure can be found in Sections 4.1 (IFA STS-29-M-1) and 4.8.3.5 of this volume.

Nozzle Region. The SRB aft skirt conditioning system performed satisfactorily and as expected.

However, similar to 360L002 (STS-27R), there was a 30_F temperature differential between
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conditioning gas and SRM hardware response, suggesting significant heat loss between the heater

and aft skirt compartment. There was also evidence of circumferential temperature differences

within the aft skirt compartment (as much as 5°F on the RH flex bearing aft end ring).

4.8.2.6 Prelaunch Thermal Dqta Evaluation. A complete assessment of prelaunch thermal data is

given in Section 4.8.3.6. A summary of key observations follows.

GEI and Joint Heater Sensors. Data were somewhat in agreement with March historical on-pad

thermal predictions, deviating for the most part on the cooler side because the average ambient

temperature fell below the -1 sigma value. The LCC time period (T - 6 hr to T - 5 rain) real-time

predictions, which incorporated an environmental update for the last 24 hr prior to launch, were

also somewhat in agreement with GEI. GEI deviated for the most part on the warmer side due to

higher than anticipated ambient temperatures.

Infrared Temperature Measurements. IR readings were taken for the T - 3 hr tirneframe from the

portable STI. No IR gun readings were taken due to a malfunction during pad walkdown.

Measurements from a fixed STI were verbally reported for the outboard area of the LH SRB.

These measurements, between 59" and 61°F, were comparable with GEI data.

4.8.3 Results Discussion

4.8.3.1 Postfli_ht Hardware Inspection. Following the recovery of the STS-29R SRBs, a postfiight

inspection of the external hardware was conducted at the SRB disassembly facility (Hangar AF).

TPS performance was considered to be excellent in all areas, with external heating and recession

effects being less than predicted (Table 4.8-1). Predictions from the worst-case design trajectory

environments (Table 4.8-2) will be documented in the SRB Thermal Design Data Book,

SE-019-068-2H.

The condition of both motors appeared to be similar to previous flight motors, with most of

the heat effects seen on the aft segments on the inboard sides of the SRBs. The aft segment

inboard regions facing the ET experience high aerodynamic heating normal to protuberance

components. They also receive the high plume radiation and recirculation heating of aft-facing

surfaces induced by the adjacent SRB and SSMEs. In this area there was slight ablation to the

TPS over the factory joints, the stiffener rings and stubs_ and DFI runs. A concise summary of

the external hardware condition is shown in Table 4.8-3.

Field Joints. All field joints on both motors were in excellent condition. There were no signs of

ablation on any of the JPSs and only slight paint blistering on the cork cover. The paint on the

KSNA doseout aft of the cork was also slightly darkened and blistered, with occasional pitting.

This was probably due to aerodynamic heating and the result of aft edge hits from water impact

and nozzle severance debris.
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Table 4.8-1. 360L003 RSRM External Performance Summary
(TPS erosion) (LH and RH motors)

Maximum Erosion (in.)

Component TPS Material Predicted Measured

Field Joints Cork 0.003 None

Factory Joints EPDM 0.014 Not measurable*

Systems Tunnel Cork 0.014 None

Stiffener Rings EPDM 0.009 Not measurable*

DFI, Cables Cork 0.036 Not measurable*

Silica phenolic 0.000 None

Nozzle Exit Cone Cork 0.104 NA**

*All evidences of erosion were apparent only on the inboard region of the aft
segment, where the flight induced thermal environments are the most severe

**Nozzle exit cones are not recovered
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Table 4.8-2. SRB Flight-Induced Thermal Environments

1. Ascent Heating

Document No. STS 84-0575, dated 24 May 1985

Change Notice 2, SE-698-D, dated 30 Apr 1987

Data on computer tapes No. DN 4044 and DN 9068

Change Notice 3, SE-698-D, dated 30 Oct 1987

Tape No. DP 5309

2. Base Recirculation Heating

Document No. STS 84-0259, dated October 1984

Change Notice 1, SE-698-D, dated 30 Sep 1987

3. SSME and SRB Plume Radiation

Document No. STS 84-0259, dated October 1984

Change Notice 1, SE-698-D, dated 30 Sep 1987

4. SSME Plume Impingement After SRB Separation

Document No. STS 84-0259, dated October 1984

Change Notice 1, SE-698-D, dated 30 Sep 1987

5. Reentry Heating

Document No. SE-0119-053-2H, Rev D, dated August 1984,

and Rev E dated 12 Nov 1985

REVISION

89857-4.2

OOCNO TWR-17542-1 IvoL

sec IPAae 198



MORTONTHIOKOLINC.

Space Operations

Table 4.8-3. 360L003 RSRM External Performance Summary
(LH and RH motors)

Component

Field Joints

Factory Joints

Systems Tunnel

StiffenerRings

DFI, Cables

Nozzle ExitCone

Motor Case

TPS Material

Cork

EPDM

Cork

EPDM

Cork

Cork

NA

Performance

Typical

Typical

Typical

Typical

Typical

Typical

Typical

Recovered Hardware
Performance Assessment

All field joints in excellent condition;
slight paint blistering

All factory joints in very good condition;
slight ablation of EPDM on aft segment
joints on inboard side of both motors
(approximately 220 to 320 deg); multiple
debonds on aft edge of LH aft center
weatherseal

Cork TPS a_acent to tunnelfloorplate
in excellentcondition;very littlepaint
discolorationand no measurable cork
ablation

Normal thermally,onlysignificant
ablationwas on stub tipsand leading
edge oftee sectionson inboardsideof
motors;stiffenerringon RH motor were
fracturedat approximately210 deg due

towater impact

Generallyin good condition,with slight

paintblistering;some areasofcork
missingon phenolicDFI cableruns

Normal based on temperaturesensor
data

No hot spotsor discolorationofthe

motor casepaintdue to externalor
internal heating; intermittent paint
blistering on either side of forward stubs

REVISION
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Factory JointR. The factory joints on each of the motors were in very good condition. The only

signs of heat effects found on the factory joints were located on the aft segments of each motor.

There was only slight ablation, charring, and discoloration on the inboard regions of the aft

segment factory joints. This occurred between approximately 220 and 320 deg circumferentially on

each motor. Again, these are all normal occurrences that have been consistently observed on

previous flight motors. The weatherseal over the arc center factory joint of the LH SRB was

unbonded at 11 locations, with the largest unbond (about 58 in. long) located between 320 and

360 deg circumferentially. The unbonds appeared to be due to adhesive failure occurring at

splashdown. Additional discussion of the unbonds is in Section 4.1 of this volume

(IFA-STS-29-M-2).

Systems Tunnel. The cork TPS adjacent to the systems tunnel floor plate was in excellent

condition. There was very little paint discoloration and blistering. All K5NA closeouts over cables

and tunnel seams were in excellent condition.

Stiffener Rings. The stiffener ring TPS was generally in very good condition, with only slight

thermal degradation. The major heat-affected area was again predominantly in the 220- to 320-deg

sector, with the ethylene-propylene-diene monomer (EPDM) on the outer flange showing signs of

brown charring. This region was subjected to aeroheating along the outboard tip forward face,

while the aft face and top surfaces experienced radiant heating. The KSNA TPS on the forward

side of the stubs was also slightly charred in the same regions, with intermittent pitting around

the whole circumference. The three stiffener rings on the KH SKB were fractured during water

impact_ typically at about the 210- to 220-deg location.

DFI and GEI Cables. The cork and KSNA TPS coveting the DFI, GEI, and cableways was

generally in good condition. Very little heat effect was observed, consisting of only slight paint

discoloration and blistering. Some of the DFI and GEI cable runs had small areas of missing cork

at intermittent regions. These minor cork losses were all attributed to debris impact during

reentry or at splashdown. The largest sections missing were a 6- by 4-in. section at Station 539

and a 10- by 4-in. section at Station 1751, both on the LH SRB. All other sections were less than

2 square inches.

Nozzle. The external appearance of the nozzles was typical compared to other flights. The CCP

on the exit cone was either fractured or completely missing due to linear shaped charge (LSC)

firing and water impact. In many areas the GCP insulator was also missing, exposing the

aluminum shell. The aluminum shell showed no signs of heat damage, however. The internal

parts of both nozzles had the appearance of previous postflight hardware. There were intermittent

impact marks located circumferentially around both of the nozzles. There were a few instances of

charred, popped-up CCP and postfire wedgeouts, which have been observed on previous postfire

nozzles. Additional nozzle assessment is given in Section 4.11.4 of this volume.
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4.8.3.2 DFI Therm¢_ S#nsor Assessments. DFI was installed on STS-29R to obtain the pressure,

strain, vibration, and thermal data reflecting the effects of the actual flight environments. It was

intended to compare the flight test data with the corresponding information obtained analytically

by using the design flight environments to verify the design. The DFI consisted of pressure

transducers, strain gages, girth gages, accelerometers, and RTDs.

This part of the report presents the comments pertaining to the data recorded by the RTDs.

RTDs were installed by both Morton Thiokol and USBI to confirm their respective designs. This

discussion will address the RTDs which were installed by Morton Thiokol.

The STS-29R flight trajectory was a lofted trajectory as compared to the IVBC.3 worst-cese

design trajectory. Consequently the flight aerodynamic heating and plume heating pulses during

ascent would be lower than the corresponding heat pulses for the design trajectory. Therefore, the

measured DFI thermal data, barring some unforeseen circumstance, would be lower than the

analytically predicted data. The predicted data are based on the results of computer-aided thermal

analysis using the thermal environments provided by MSFC (Table 4.8-2).

During the STS flights, two phenomena have been historically observed during the reentry

phase of the SRBs. These phenomena have been identified as hydrazine fires in the base region

and flame radiation from the nozzle plume. Both occur during the reentry phase of the SRBs at

about 280 sec into flight when the boosters reenter the earth's atmosphere. The effects of these

two phenomena augment the effects of the normal reentry aerodynamic heating.

Hydrazine fires have been observed on 6 of the first 24 flights, and the nozzle flame heating

has been observed on practically all of the flights. The reentry thermal environments (Item 5,

Table 4.8-2) include the effects of the nozzle plume radiation environments, and these have been

taken into consideration in the design of the base region equipment. In other words, the effect of

the plume radiation is already shown in the predicted data. Since the hydrazine fires have

occurred sporadically, it is doubtful that their effects are included in the reentry thermal

environments. Their occurrence can be confirmed from the readings of the RTDs installed by

USBI on the hydrazine equipment and by postflight hardware inspection of the base region.

The RTDs were installed on both the LH and _ SRMs on the igniter adapter, the forward

and aft field joints, the nozzle fixed housing flange, the nozzle nose inlet aluminum housing, the

nozzle throat steel housing, the nozzle aft exit cone aluminum supporting structure, and the aft

exit cone near the exit plane under the cork (Figures 4.8-1 through 4.8-4). Most of the

instrumentation was installed to detect any possible leakage of combustion gases through the

igniter joint, the field joints and the case-to-nozzle joint. Furthermore, the RTDs were to record

the time of certain events such as the severance of the aft exit cone and the blowing away of the

thermal curtain which protects the equipment in the base region. It should be noted that the

predicted temperatures do not consider the leakage of combustion gases.
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Table 4.8-4 presents the list of DFI thermal gages, their locations, the maximum predicted

temperatures, and the actual maximum temperatures recorded at the time of SRB separation and

later during reentry. Figures 4.8-5 through 4.8-20 detail actual DFI thermal histories. The

following general comments provide observations and concerns:

a. All the measured data showed oscillations around the mean values, indicating that the RTDs

were picking up stray signals due to vibrations or that a problem existed in the data acquisition

system.

b. All of the measured data registered normal temperatures during the ascent of the STS,

indicating that there was no leakage around the igniter joints, the field joints, or the case-to-

nozzle joint_

c. The RTDs on the aft exit cone near the exit plane dropped their data at about 195 sec after

lift-off. This suggests that the aft exit cone was severed from the SRBs at about 195 sec into

flighL The aft exit cone is severed by the LSC, which, when ignited, produces high-velocity

debris under vacuum conditions.

Since the thermal curtain is tied to the compliance ring, which is very close to the LSC,

the inner edge of the thermal curtain will more than likely tear off when bombarded with the

pieces of high-velocity debris. It is therefore highly probable (a fair assumption) that the

thermal curtain lost its protective shield to the base region at the time of aft exit cone

severance.

d. The RTD (MSID B07T7621A) located on the steel structure of the LH SRM nozzle throat failed

the system checkout test in the VAB and was not repaired. Therefore, no data were avsilable

for this location. The RTD (MSID B07T7623A) located on the aft exit cone at the nozzle exit

on the LH SRM did not register any temperature rise during flight; its performance is

therefore questionable. The RTD (MSID B07T8607A) located on the forward field joint of the

RH SRM dropped its data at 320 sec into flight for a period of approximately 18 sec.

e. The RTDs on the LH SRM (MSID BO7T7620A) and on the RH SRM (MSID BOTTS620), all

located on the steel structure of the nozzle throat, showed higher-than-predicted temperatures

during reentry. All of these temperatures could have been influenced by the entry through the

nozzle snubber of the reentry hot air, the products of the burning hydrazine, or the products of

combustion from the nozzle. Snubber clearance is only 0.25 inch. The predicted temperatures

do not consider this extra heating caused by the inflow of the gases. The reentry thermal

environments (Item 5, Table 4.8-2) do not prescribe any environments for this region.

However, a maximum measured steel temperature at the nozzle throat of 115°F during

reentry, as compared to the predicted temperature of 900F, should not be objectionable.

f. The RTDs (MSIDs B07T8619A and B07T8622A) located on the aluminum structure of the aft

exit cone of the RH SRM registered maximum temperatures of 295 ° and 270°F, respectively,
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Table 4.8-4. 360L003 Flight Design Trajectory Estimates
Versus Actual Ascent and Reentry DFI Data

Axial Angular

Component and Station Location Design

Location/MSID (in.) (deg) Estimate*

IgniterAdapter 486.4

Maximum Temperature (°F)
Measured

Ascent Reentr£

RH SRM/B07T8606A
LH SRM/B07T7606A

205 200 69 76
205 200 68 75

Forward Field Joint 846.3

RH SRM/B07T8607A** 180 120
B07T8608A 60 120
B07T8609A 300 120

LH SRM/B07T7607A 0 120
B07T7608A 120 120
B07T7609A 240 120

92 92
92 92

85 85
89 91
92 92
87 88

Aft Field Joint 1486.3

RH SRM/B07T8610A 180 132
B07T8611A 60 125
B07T8612A 300 128

LH SRM/B07T7610A 0 132
B07T7611A 120 125
B07T7612A 240 128

95 95
99 99
89 90
92 92

101 101

90 92

Case-to-Nozzle Joint 1876.6

RI-I SRM/B07T8613A 180 172
B07T8614A 90 172
B07T8615A 0 172
B07T8616A 270 172

LH SRM/B07T7613A 0 172
B07T7614A 90 172
B07T7615A 180 172
B07T7616A 270 172

89 132
85 117
88 124

89 134
89 125
86 130
86 137
86 138

Nozzle Nose

Housing, Aluminum 1828.1

RHSRM/B07T8617A 180 90
B07T8618A 0 90

LHSRM/B07T7617A 0 90
B07T7618A 180 90

73 77
73 73
73 74
73 74

*Estimates from worst-case induced heating design trajectory
**Temporary data dropout at 320 sec
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Table 4.8-4. 360L003 Flight Design Trajectory Estimates
Versus Actual Ascent and Reentry DFI Data (cont)

Axial Angular Maximum Temperature (°F)
Component and Station Location Design Measured
Location/MSID (in.) (de_) Estimate* Ascent Reentr_

Nozzle Throat
Housing, Steel 1845.0

RHSRM/B07T8620A 90 90 86 111"*
B07T8621A 270 90 80 101"*

LHSRM/B07T7620A 0 90 86 115"*
B07T7621A 270 90*** NA NA

NozzleAft Exit

Cone, Aluminum 1905.0

RHSRM/B07T8619A 180 222 83 295 t
B07T8622A 0 222 82 270 t

LHSRM/B07T7619A 0 222 82 250 t
B07T7622A 180 222 82 286 t

NozzleExit--UnderCork 1996.5

RH SRM/B07T8623A 180 236 62 _3ttB07T8624A 60 236 62

LH SRM/B07T7623A 0 236 73

B07T7625A 240 236 63

*Estimates from worst-case induced heating design trajectory
**Gage response exceeded design estimate. The higher response is attributed to the fact that

there are some minor reentry heating effects within this inner nozzle region past the nozzle
snubber. Present external heating design environments are not defined for this region

***Gage was not operative--failed system test
tGage response exceeded design estimate. A probable explanation is that additional heating

was imparted to the components in the base region due to hydrazine fires, which have also
occurred on some of the past flights. The environment from this phenomenon is not
accounted for in present external heating design environments

t tReadings were taken at the time of nozzle severance--approximately 195 sec
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as compared to the predicted temperature of 222"F at these locations. Similar RTDs (MSIDs

B07T7619A and B07T7622A) on the LH SRM registered maximum temperatures of 250 _ and

286_F, respectively. All these temperatures are rather high based on previous flight

experience. For example, these same RTDs for STS-26R and STS-27R registered maximum

temperatures in the range of 130" to 200"F.

There is a difference between the flight of STS-29R and the flights of STS-26R and

STS-27R in that STS-29R had nozzle severance at apogee, while the latter two had nozzle

severance just before splashdown. Analytically calculated temperatures for these two conditions

are not that different.

The reason that the maximum measured temperatures for STS-29R are higher than the

maximum predicted temperatures is because that additional heating was imparted, unaccounted

for in the design, to the components in the base region by hydrazine fires. The probability of

hydrazine fires can be confirmed by the instrumentation installed by USBI on the hydrazine

tubes supplying the fuel to the APUs in the base region.

Apart from the two anomalies discussed in items e and f above, it can reasonably be stated

that the majority of the DFI thermal gages recorded temperature data well within the predictions.

Upon comparing the data (prediction versus actual measurements), it appears that the thermal

environments, as presented in Table 4.8-2, are overly conservative. Undefined environments for

hydrazine fires in the base region would be an exception to this.

4.8.3.3 PMBT and FBMBT Pr_li_ion_. Temperature predictions (°F) were performed at various

times with respect to the launch of STS-29R. They are predictions for the time of launch and are

summarized as follows:

L - 8 Days L - 2 Days L - 24 Hours
Historical March _ Mpr_h I_ Mar_h 12 Post

PMBT 62 66 62 -- 62
FBMBT 70 74 -- 75 74

The change in predictedPMBT can be attributedto the differencesbetween the weather

predictionsused forthe L -8 day predictionand the actualambient environmentavailableforthe

L - 2 day prediction (Figure 4.8-21). Predicted average daily ambient temperature for the period

from 3 to 11 March, which was used in the L - 8 day prediction, was 70°F. The actual average

daily ambient temperature for this same time period, which was used in the L - 2 day prediction,

was 64°F.

The L - 8 day prediction of 66°F was based on three sources of data: I) tapes sent to

Morton Thiokol from KSC for the period from 4 to 15 February, 2) ambient weather data from
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KSC weather station from 16 to 2 March, and 3) weather predictions from MSFC for 3 to

11 March (scheduled day of launch at that time). The data sent by tapes contained periodic lapses

which were resolved by: 1) contacting the KSC weather station, 2) using a linear interpolation

scheme which incorporated data prior to and aRer the lapse, and 3) consulting the newspaper USA

Today for the high and low temperatures of the day.

The L - 2 day prediction of 62°F was based on the same three sources of data. However,

since no additional data tapes were available because of delays in receiving the tapes and difficulty

in reading the tapes, the ambient weather data from the KSC weather station became the primary

source of data due to reliability. Weather predictions from MSFC were used for the last 48 hr

prior to launch.

Figure 4.8-22 presents the FBMBT predictions for both SRMs using reconstructed GEI

average flex bearing aft end ring data as boundary conditions for the analysis. Time periods of aft

skirt conditioning purge operation are evident in the figure. Prior to launch, a 12°F rise in

FBMBT resulted from the 14- to 15-hr conditioning period. It should be noted that the

conditioning system was used early in the countdown when GEI fell below 61°F during the cold

front of late February. This was performed as a precaution according to OMRSD

recommendations to maintain the flex bearings above 60°F.

4.8.3.4 On-Pad Environment Evaluations. Actual environmental data for the final 24 hr prior to

launch are detailed in Figures 4.8-23 through 4.8-27 and summarized together with GEI in Table

4.8-5. Ambient temperature data (47" to 78"F) exceeded the range of the average March

historical data (61" to 73°F), the lower or cooler side showing the most deviation. Cooler-than-

average temperatures representative of the March historical -1 sigma value were also evident

during the final 12 hr prior to launch. Windspeeds were high (reaching 30 kn) a couple of days

prior to launch, but were within the historical average the day of launch.

The SRM local prelaunch environment due to March historical predictions suggested as

much as a I"F temperature suppression while the ET was loaded for winds from the southeast

direction. Actual winds were consistently from the southwest-by-west direction. After assessing

GEI, there was no apparent evidence of extreme temperature suppression due to ET cooling

effects--only minor 1° to 2°F chilling on the inboard region of the RH SRM (Table 4.8-5).

4.8.3.5 Launch Commit Criteria. No LCC thermal violations were noted. Measured GEI and

heater sensor data, as compared to the LCC requirements, are presented in Table 4.8-6. The

igniter joint heaters performed as expected, with cooldown occurring over an approximate 8-hr

period. During this period, the temperature dropped from 99" (T - 4 hr) to 70"F (T - 5 rain).

Five of the six field joint heaters performed adequately and as expected. However, the RH

aft field joint primary heater circuit failed at approximately T - 10 hr. The OMRSD maximum
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Table 4.8-5. 360L003 March Historical On-Pad Temperature Predictions
Versus Actual GEI/Joint Heater Sensor Data (°F)

f

Dally Cycling T - 6 Hr to T - 5 Min T - 5 Min
Component Historical Actual Historical Actual Historical Actual

Igniter Joint

RH 66-74 59-66 72-100 72-101 73-77 72-74
LH 66-74 61-67 72-100 70-101 73-77 70-72

Field Joint

RH Forward 60-78 58-70 97-108 94-107 98-108 97-107
LH Forward 60-78 56-67 97-103 94-100 97-103 95-100
RH Center 60-77 56-67 97-107 93-108 98-107 95-106
LH Center 60-79 55-65 97-102 94-101 97-102 96-98
RH Aft 60-76 55-63 97-106 94-109 98-106 97-109
LH Aft 60-78 55-64 97-102 94-104 97-101 94-96

Case-to-NozzleJoint

RH 62-71 49-63" 71-77 75-88* 75-77 82-88*
LH 62-71 56-64 71-77 78-88 75-77 85-88

Flex Bearing Aft End Ring

RH 62-71 61-64 71-77 76-93 75-77 86-93
LH 62-71 60-64 71-77 78-90 75-77 88-90

Case Acreage (deg)

RH 45 60-75 52-74 60-75 57-72 72-73 64-72
135 61-79 53-78 61-79 58-80 77-78 70-80
215 62-76 53-75 62-76 58-72 73-74 61-72
270 62-76 53-77 62-76 56-66 72-73 58-61
325 61-75 52-77 61-75 56-66 72-73 58-62

LH 45 61-79 53-73 61-74 59-66 73-74 61-64
135 61-74 53-75 61-73 59-68 72-73 61-64
215 61-74 53-73 61-73 56-69 72-73 61-69
270 62-76 53-76 62-74 59-69 73-74 61-66
325 62-78 53-75 62-76 59-67 73-76 61-62

LocalEnvironment

Temperature (°F)** 61-73 47-78 61-70 56-65 70 65
Wind Speed (kn) 13 2-30 13 7-12 13 8-9
Wind Direction*** SE SW-N SE SW-W SE SW-W
Cloud Cover Scattered-clear Foggy Clear

*Sensor B06T8049A read consistentlylow duringallmonitoringperiods
**Actual temperatures representative of March historical (-1 sigma value)

***Predominant wind direction
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Table 4.8-6. 360L003 LCC Time Period (T - 6 hr to T - 5 rain)
On-Pad Temperature Predictions Versus Actual GEI/Joint

Sensor Data (°F)*

T-6HrtoT-5Min T - 5 Min

Component Predicted Actual LCC Actual

Igniter Joint

RH 70-75 72-101 66-123 72-74
LH 70-75 70-101 66-123 70-72

Field Joint

RH Forward 94-108 94-107 85-122 97-107
LH Forward 94-102 94-100 85-122 95-100
RH Center 94-106 93-108 85-122 95-106
LH Center 94-102 94-101 85-122 96-98
RH Aft 94-104 94-109 85-122 97-109
LH Aft 90-102 94-104 85-122 94-96

Case-to-NozzleJoint

RH 82-88 75-88 75-115 82-88
LH 82-88 78-88 75-115 85-88

FlexBearingAft End Ring

RH 85-90 76-93 NA-115 86-93
LH 85-90 78-90 NA-115 88-90

Case Acreage (deg)

RH 45 52-58 57-72 35-NA 64-72
135 -- 58-80 -- 70-80
215 -- 58-72 -- 61-72
270 51-58 56-66 35-NA 58-61
325 -- 56-66 -- 58-62

45 52-58 59-66 35-NA 61-64
135 -- 59-68 -- 61-64
215 -- 58-69 -- 61-69
270 51-58 59-69 35-NA 61-66
325 -- 59-67 -- 61-62

LH

Local Environment

Temperature (°F)** 50-56 56-65 38-99 65
Wind Speed (kn) 13 7-12 24 8-9
Wind Direction*** W SW-W SW-SE SW-W
Cloud Cover Foggy Clear

REVISION
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heater current Emit of 19.5 smps was exceeded and a wa/ver was approved. The secondary heater

circuit was initiated and performed nominally. IFA STS-29-M-1 was generated as a result of the

heater failure.

Prior to flight (after booster stacking at KSC) this hester failed the dielectric working

voltage (DWV) tesL (This heater had previously passed continuity, insulation, and DWV tests at

the vendor and had also passed inspection after installation.) The K5NA ablative compound was

chipped off the cable and the cable was removed. It is hypothesized that, during replacement of

the cable, I) the Kapton e insulation was damaged during handling and installation, 2) moisture

penetrated the cable or connector, or 3) the workmanship was defective. Postrecovery exam/nation

revealed that an electric short between the conductor and hackshell had burned away

approximately 0.5 to 1 in. of each of the four conductors, as well as the potting compound inside

the connector. Corrective action and disposition of this anomaly were discussed in Section 4.1 of

this volume.

The SRB aft skirt conditioning system performed satisfactorily and as expected. However,

as on STS-27R, there was a 30_F temperature differential between conditioning gas and SRM

hardware response, suggesting significant heat loss between heater and aft skirt compartment.

There was also evidence of circumferential temperature differences within the aft skirt

compartment (as much as 5"F on the RH flex bearing aft end ring).

4.8.3.6 Prelaunch Thermal Dat_ Eval_tion. Figures 4.8-28 through 4.8-32 show locations of the

GEI and joint heater sensors for the igniter adapters, field joints, case acreage, nozzle region, and

aft exit cone, respectively. Figures 4.8-33 through 4.8-62 present March historical predictions.

These predictions are based upon event sequencing, as specified in Table 4.8-7. Figures 4.8-63

through 4.8-119 present actual STS-29R countdown data.

Actual GEI and joint heater sensor data were somewhat in agreement with March historical

on-pad thermal predictions, deviating for the most part on the cooler side because the average

ambient temperature fell below the -1 sigma value (Table 4.8-5). The LCC time period (T - 6 hr

to T - 5 rain) real-time predictions, which incorporated an environmental update for the last 24 hr

prior to launch, were also somewhat in agreement with GEI. GEI deviated for the most part on

the warmer side due to higher than anticipated ambient temperatures (Table 4.8-6).

Postflight reconstructed predictions of GEI and joint heater sensor response have been

performed using the actual environmental data of the final 24 hr prior to launch. A few examples

of these predictions, compared with actual measured sensor data, are found in Figures 4.8-120

through 4.8-135. Reasonable agreement is evident for all areas except the ETA ring, systems

tunnel, and case-to-nozzle joint regions. Modeling considerations (environment and detail) for

these regions need to be examined closely. Future modeling will check these and incorporate

updates as solutions are found.
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Table 4.8-7. 360L003 Analytical Timeframes for Estimating Event
Sequencing of March Historical Joint Heater and

GEl SensorPredictions

Time (hr)

0

34
42

48

51

58

61

Countdown Events in Analysis

Midnight KSC EDT (11 Mar 1989)

Joint heater operation begins on 12 Mar 1989 (L - 24 hr)
AR skirt conditioning operation begins on 12 Mar 1989
(T - 12 hr plus 4 hr for holds)

Induced environments due to ET refrigeration effect begins
early on 13 Mar 1989 (T - 6 hr plus 4 hr for holds)

Igniter heater shutoff/start cooldown (T - 4 hr plus 3 hr
for holds)

Assumed time of launch (13 Mar 1989)

Up to an early afternoon launch on 13 Mar 1989 (allowing
for some delay)

Note: Figures 4.8-33 through 4.8-62 consist of a 2-day plus 13-hr scenario.
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IR temperature measurements were taken for the T - 3 hr timeframe from the portable STI.

No IR gun readings were taken due to a malfunction during pad walkdown. Measurements from a

fixed STI were verbally reported for the outboard area of the LH SRB. These measurements,

between 59' and 61°F, were comparable with GEI dats.

4.8.4 Conclusions and Recommendations

4.8.4.1 Postflight Hardware In_vection. Based on the quicldook external inspection, the SRM TPS

performed adequately on STS-29R. The problem of losing TPS cork caps covering the

instrumentation cables due to poor cork bonds appears to have been alleviated. Those areas that

were found to be unbonded were vented prior to launch by drilling ventholes through the cork.

Some of the instrumentation cable runs on STS-29R were filled with K5NA, as recommended

following cork losses experienced on STS-26R. The KSNA performed well, as expected, and

provided the necessary thermal protection to the cables, which have a temperature limit of 500°F.

4.8.4.2 Flight Thermal Design Environments. It is evident, based upon STS-29R nozzle region

DFI response, that additional body points and environments for hydrazine fires need to be

incorporated into the reentry design environments for the SRB base region. It is recommended

that NASA consider incorporating these data into the next revision of the reentry thermal design

environment data book.

4.8.4.3 GEI Prediction. Additional model development is recommended for modeling regions that

require more emphasis and detail in order to improve predictions. Submodels of the ETA ring,

field joint, factory joint, systems tunnel, igniter, and nozzle regions are anticipated to be

incorporated into the global thermal effort. It is also recommended that all these models, including

the 3-D SRM model, be made available for use at MSFC. This would allow Morton Thiokol

thermal personnel the opportunity to support launch countdowns at the HOSC with real-time

PMBT, GEI, and component prediction updates. This would also allow MSFC thermal personnel

the same modeling capabilities for their needs.

4.8.4.4 Aft Skirt Conditionin2. It is apparent, based on the STS-29R GEI sensor steady state

response to the operation of the aft skirt conditioning system, that substantial gas cooling occurs in

the ducting system before the gas enters the aft skirt. It is recommended that the gas

temperature be monitored as it enters the aft skirt compartment. During cold weather this would

allow the use of a higher operating temperature and at the same time not violate the 115°F

maximum within the compartment.

4.8.4.5 GEI Accuracy. It is recommended that GEI date collection accuracy be increased by

reducing the gage range and increasing the digital word length.

4.8.4.6 Real-Time Data Acquisition. It is recommended that near-real-time on-pad GEI and

environmental data be available to Morton Thiokol after pad validation. These data, collected
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hourly,need to be transmittedelectronicallyatweekly intervalsuntil2 weeks priorto scheduled

launch dates.From thispointuntillaunch,dailytransmittalsare necessary.These dataare

necessaryto help meet the requirementofPMBT updatespriorto launch and toaid in predicting

the localSRM environmentby buildinga variableconditionsdatabase.

4.8.4.7Nozzle Severance

Based on the severereentryheatingenvironmentsof STS-29R, itisrecommended thatnozzle

severanceoccurjustpriorto splashdown ratherthan at apogee. Reentry nozzleflame heatingwas

significantforthisflight_exceedingthe 95-percentdesignenvironments.

Itisalsorecommended thatThiokolobtainformalcontractdirectionconcerninghydrazine

firesbeforethe redesignofthe nozzleseverancecable.

4.8.5 Thermal PredictionMethodoloKy

Methodology will be presented for PMBT, GEI, and component predictions due to on-pad natural

and induced environments. Also, methodology will be presented for DFI and component

predictions, including TPS recession, due to flight-induced environments.

4.8.5.1 Flight Induced DFI and Component Predictions. Component design analyses due to

current flight-induced thermal loads were performed during the redesign effort and will he

documented in the SRB Thermal Design Data Book, SE-019-068-2H. Estimates for DFI locations

were inferred from these analyses and summarized.

The current design loads were developed for a conservative trajectory which is not included

in presently planned flight trajectories. Since thermal loads data were not available for the

trajectory of STS-29R, there will be no direct correlation possible with actual DFI data.

Actual DFI data were used for determining if design predictions were exceeded. If they

were exceeded, the design analyses and environments were to be readdressed to identify problem

areas and to update and/or modify analytical models.

4.8.5.2 On-Pad PMBT and Flex Bearing Predictions. PMBT and flex bearing predictions were

performed using on-pad environmental and GEI measurements. However, these data were limited

due to availability and access problems. From these data, boundary conditions were derived for a

coarse 3-D global thermal model in predicting PMBT and for a 2-D axisymmetric model of the aft

end in predicting FBMBT.

Two possible methods were considered in making the predictions. The first involved using

the environmental data (convecting to the ambient and adding solar heating where appropriate).

The predicted surface temperatures from this method could then be compared to the case acreage

GEI in an attempt to perfect modeling techniques. The second method was to apply the GEl data

directlytothe model as imposed surfacetemperatures.

permits.

REVISION

This method will be considered when time

OOCNO.TWR-17542-1 I vo,

sEc IPAGE 288

89857-2.11



MORTON THIOKOL INC.

SpaceOperations

-4.8.5.3 0n-Pad GEl _nd _0mvonent Predictions. Four methods were considered. Three of the

four are concerned with predicting boundary conditions usingMarch histories]data. Results from

these three were applied to a coarse 3-D SINDA global thermal model of the SRM for predicting

case acreage GEI and joint heater sensor response. 2-D axisymmetric and planar models were

considered for other regions, such as the systems tunnel and the aft end components. The fourth

method was an estimation based upon near-real-time GEI and environmental data, and this

method was used to supplement and update the results of the other three during HOSC support.

The four methods are detailed below.

a. Historical ambient correlations using natural environments--This method was used to predict

historical average monthly boundary conditions for the month of March based upon solar

heating, predominant windspeeds, and ambient temperature cycling.

Monthly averaged heat transfer coefficients were calculated using the NASA large cylinder

correlation for every hour of the day. Solar heating input was calculated using the methods

described in standard solar heating texts for a single, monthly averaged daily insola*Jon profile

to represent all days of the month. Shading aspects were also considered through experimental

use of a model representing the STS on the MLP with service structures. This model was

mounted on a heliodon, and shading factors were visually estimated.

b. 3-D flow/thermal modeling using natural and induced environments--This method was used to

predict boundary conditions due to ET cooling effects (local air temperatures and heat transfer

coefficients) during final countdown while the ET was loaded.

The geometry that was used consisted of the STS on the MLP, the orbiter support

structure, the concrete hardstand, and the flame trenches. It can be used for modeling winds

originating from the north, northeast, east, southeast, and south. Historically, March winds

are predominantly from the southeast, and this was considered for STS-29R.

c. Experimental with near-real-time data--This method is used to experimentally predict local heat

transfer coefficients at GEI locations during preflight activities and at IR locations during

postflight activities.

This task has not been accomplished at this time'but will be considered in future

correlations in an attempt to data base heat transfer coefficients for a given wind direction,

windspeed, and ambient temperature. The task will consist of calculating local heat transfer

coefficients by measuring the change in skin and ambient air temperature over a period of

time. This will be correlated to the average weather conditions existing over this time period

(windspeed, wind direction, and ambient air temperature). It would also be advantageous to

correlate it with the internal bore temperature. Response due to solar heat flux to the surface

will be taken into consideration. A calculated solar component will be removed from the

measured value.
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For future efforts after development flights, a data base of overall locai heat transfer

coefficients could be generated for a spectrum of windspeeds, wind directions, and ambient air

temperatures. Heat transfer models wig access and extrapolate from this data base. These

coefficients will also take into account the complex airflow pattern around the motors, the

specific locations on the motors, radiation interchange with the surrounding surfaces, and

radiation to the sky.

d. Estimates from near-real-time and projected weather data--This method is used to estimate

GEI response at the time of launch by interpreting previously collected (prior week) GEI and

environmental data and projecting with day-of-launch weather predictions.

This determination was based upon having a near-real-time update available prior to HOSC

support. This update was at two intervals--one week's worth of data before leaving Morton

Thiokol for the HOSC supplemented with T - 36 to T - 6 hr data at the HOSC. Results from

the previously discussed methods and projected weather data were taken into consideration.

This effort provided the final T - 6 hr to T - 5 min predictions.

4.9 MEASUREMENT SYSTEM PERFORMANCE (DFI) (FEWG REPORT SECTION 2.9.5)

4.9.1 Developmental Hight Instrumentation Performance

Of the 417 SRM DFI measurements, 389 were operative at lift-off. Of those that were operative at

lift-off, 375 (96 percent) performed properly throughout their respective mission phases. Table

4.9-1 lists the DFI measurements that failed prior to or during flight. Additional information on

the DFI performance is contained in Volume IX of this report.

4.9.2 Girth Gage Svikine

As was mentioned previously in Section 4.6.3 of this volume, the data of the center and aft field

joints of the RI-I SRM contained spikes similar to those seen on 360L001 and 360L002. There

were also a few other gages that showed similar spiking behavior. Table 4.9-2 contains a list of

the gages that showed some degree of spiking. (It should be noted that Table 4.9-2 is not a

comprehensive list of all spiking gages.)

An engineering spiking investigation team concluded that the girth gage spikes were an

instrumentation phenomenon and are not representative of actual case movement or behavior.

This conclusion was partially based on the fact that there were locations where the girth gages

showed some spiking and biaxial gages that were placed very close to the girth gage showed no

evidence of spiking.

Another significant point that indicates this is an instrumentation phenomenon is the spike

timing. As can be seen in Table 4.9-2, all the spike events occur around 0.25 sec (with the

exception of two that are noted to be data acquisition system "glitches').
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Table 4.9-2. Summary of Girth Gages That Contain Spiking

Gaee

LH SRB

B08G7269

B08G7298

B08G7410

RH SRB

B08G8283

B08G8285

B08G8286

B08G8287

Station

611.5

1497.5

1797.0

1168.8

1170.2

1172.6

1175.0

Time
(sec) Direction Comments

0.2625 Hoop (girth)

0.11875 Hoop (girth)

0.2875 Hoop (girth)

0.225 Hoop (girth)

0.225 Hoop (girth)

0.225 Hoop (girth)

0.26875 Hoop (girth)

B08G8288 1177.3 0.26875 Hoop (girth)

B08G8342 1466.0 0.11875 Axial

B08G8295 1490.2

1492.6

1495.0

1497.5

1637.5

B08G8296

B08G8297

B08G8298

B08G8301

0.29375 Hoop (girth)

Small spike on the way up--does not
exceed overall maximum

Big spike shortly after ignition--does
not exceed overall maximum; may be
a glitch in the data acquisition system

Small spike on the way up--does not
exceed overall maximum

Noisy at ignition with a small negative
spike

Same as above

Same as above

Spikes similar to those seen on
360L001 and 360L002; exceeds overall
maximum of the gage

Same as above

Big negative spike; one data point
only-may be a "glitch" in the data
acquisition system

Spikes similar to those seen on
360L001 and 360L002; exceeds overall
maximum of the gage

0,29375 Hoop (girth) Same as above

0.29375 Hoop (girth) Same as above

0.29375 Hoop (girth) Same as above

0.2875 Hoop (girth)

B08G8410 1797.0 0.2875 Axial

Hoop (girth)B08G8307 1859.19 0.09375

Same as above, except there are two
spike points of equal magnitude very
close together.
Spikes on the way up, does not exceed
overall maximum.

Negative spike right at ignition,
followed by some noise.
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Figure 4.9-1 is a comparison plot that shows four girth gages on the RH aft field joint overlaid

with motor pressure. Normally, the girth gage readings track the motor pressure; in other words,

the girth gage is expected to peak at the same time that the motor pressure peaks. However, as

can be seen in Figure 4.9-1, peak motor pressure is not reached until about 0.6 sec, whereas the

girth gage spiking and peaks all occur at about 0.25 sec. A preliminary evaluation indicates that

this 0.25-see time may be associated with the gage natural frequency and/or configuration.

As was also mentioned previously in Section 4.6.3.3, some girth gages on the RH SRB also

showed a response delay of about 0.25 sec. This delay phenomenon is also believed to be related

to the above-mentioned girth gage spiking phenomenon.

It is recommended that additional investigation be conducted to more fully understand the

girth gage spiking phenomenon, including the addition of DFI on future flight motors.

4.10 MEASUREMENT SYSTEM PERFORMANCE (GEI) (FEWG PARAGRAPH 2.9.7)

A total of 105 GEI measurements that were on flight set 360L003 performed properly. Therefore,

of the total 108 GEI measurements, 97 percent performed properly throughout their respective

mission phases. Table 4.10-1 lists the GEI measurements that failed prior to flight. (All GEI are

disconnected by breakaway umbilicals at SRB ignition and are not operative during flight.) A

complete listing and evaluation of all the GEI are contained in Volume IX of this report.

Table 4.10-1. GEI Losses

MSID No. Angular Location Station Comments

BO6T7015A 45.0 1091.48

BO6T8018A 270.0 1091.48

BO6T8049A 180.0 1876.60

Forward/Center Segment

Forward/Center Segment

Case-to-NozzleJoint

Instrument Condition

Shorted at VAB

Shorted at VAB

Read consistently low

4.11 RSRM HARDWARE ASSESSMENT (FEWG REPORT SECTION 2.11.2)

4.11.1 Insulation Performance

4.11.1.1Summary. Postfiightevaluationshowed excellentinsulationperformance. No evidenceof

motor combustion gas was found pastthe insulationin the sixfieldjointsor two case-to-nozzle

joints.No gas paths or severeerosionwas identifiedin any acreageinsulation.Allexternal

insulationwas in good condition,with the exceptionofthe LH aftcentersegment factoryjoint.

Complete insulationevaluationiscontainedin Volume HI of thisreport.
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4.11.1.2 External Insulation

Factory Joint Weatherseal_. The factory joint weatherseals and exterior motor cases appeared to

be in good condition. However, the weatherseal on the 360L003A aft center segment was

unbonded on the aft edge in 11 places. The largest unbend extended 58.3 in. circumferentially and

exhibited adhesive failure at the Chemlok* 206-to-case interface. The pin retainer band was also

stretched, and the pins were visible. The total unbend area covered approximately 57 percent of

the circumference on the aft edge. The unbonding appears to be the result of bondline

contamination and is being further evaluated.

Moisture was found dripping from under the weatherseal on the 360L003B forward center

segment factory joint. The water appeared to have entered the weatherseal at the locations where

DFI instrumentation wires or insulation cure thermocouple wires were routed between the

weatherseal and the case. The weatherseal was very well bonded in all other areas.

This same condition was noted on multiple segments of the 360L002 flight set. The closeout

of the wire exit locations is being reevaluated to eliminate problems on future flights. No

significant areas of missing EPDM insulation were noted on any factory joint weatherseal.

Stiffener Stubs and Rings. The insulation over the stiffener stubs and rings was in good condition.

Normal heat effects and discoloration were evident on all surfaces, with no significant areas of

missing material. The EPDM was well bonded to the stiffener stubs and appeared to be well

bonded to the stiffener rings, as evidenced by a tap test of all exposed surfaces prior to

hydrolazing. The only exceptions were on the 360L003B RH motor, where the stiffener tings were

buckled due to impact loads and the insulation was visibly unbonded.

After the rings were removed from the case, separations were noted between the insulation

and stiffener rings on approximately a third of the 18 ring segments. A similar condition was

noted on the 360L002 flight set. Most of the unbends occurred on the 360L003B motor, which

was more thoroughly hydrolazed than the 360L003A. The largest separation measured the full

length of the ring segment. Pieces of K5NA ablation compound were found under the EPDM as

much as 39 in. from the end of the ring segment. Insulation Design believes that hydrolazing is

the major contributor to these unbonds.

4.11.1.3 _ase-to-Nozzle Joint. Based on the visual evaluation, both case-to-nozzle joints performed

well. No gas paths through the polysulfide adhesive or any other anomalous conditions were

identified. The polysulfide adhesive had only two measurable voids aft of the insulation step on

the 360L003A joint.

The largest void was 0.86 in. axially by 0.50 in. circumferentially. There were three voids

on the 360L003B joint forward of the insulation step. All three voids were eroded as a result of
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the normal ablation process. However, no hot gas penetrated beyond the insulation step. The

largest of the three voids measured 2.8 in. circumferentially and extended to the step. The

360L003A motor exhibited a high amount of adhesive failure upon disassembly (75 percent). This

can he attributed to inadequate NBR abrasion prior to joint assembly. The high amount of

adhesive failure had no effect on the function of the joint.

The 360L003B joint had good cohesive failure of the polysulfide (95 percent). The average

polysulfide vent slot fill was 11 percent on 360L003A and 5 percent on 360L003B.

4.11.1.4 Field Joints. The internal insulation in all six of the case field joints performed as

designed, and no anomalous conditions were identified.

J-leg tip contact was evident over the full circumference at each joint. Wet soot deposits

extending down the bondline were noted on all of the 360L003 field joints to a fairly uniform

depth (0.3 to 0.6 in.). The most extreme condition was on the 360L003A forward field joint, with

soot extending a maximum of 0.9 in. into the bondiine (outboard from the remaining material).

The initial appearance of these areas could have been construed to be chamber gas leakage into

the joint bondiine, but the soot was readily removable with solvent and showed no heat-affected

insulation. Wet sooting was noted further into the bondline on the 360L001 forward field joints

and extended to the radius region. This sooting is believed to have occurred at splashdown during

joint flexing in conjunction with the phenomena which generates the radial tears in the NBR

inhibitor stubs.

An area that appeared to be dry soot was also noted in the 360L003B aft field joint

outboard of the wet sooted region. The soot was visible in an adhesive glossy region approximately

1 in. outboard of the J-leg tip. The soot did not fill the entire glossy noncontact area and left no

indication of heat effects after solvent cleaning. A theory for this occurrence is that, during motor

reentry, the internal pressure is decreasing and increasing ('chugging'). During this process,

partial joint insulation contact may be lost. When the motors splash down, wet sooting occurs, as

discussed above. In this instance, the wet sooting did not penetrate to the depth that the joint had

opened during reentry.

The deepest clevis edge separation noted measured 0.21 in. axially by 1.1 in.

circumferentiaily on the 360L003A aft center segment. Only two segments had recordable (over

0.1 in.) edge separations, and the total separation count was only five. This was significantly less

than on the previous two flights. This hardware was the first flight set to incorporate grit blasting

of the inner clevis leg. The process appears to have significantly improved the postfire edge

separation condition.

4.11.1.5 Internal Acreage Insulation. The acreage insulation, including the internal insulation over

each of the factory joints, appeared in good condition during the preliminary evaluation. No

evidence of gas paths through the insulation or severe erosion was identified.
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Center Segments. A few tears greater than 3 in. radially were noted in the aft center segment

inhibitor stubs (four on 360L008A and three on 360L003B). Some radial tears were also noted in

the forward center segment NBR inhibitor stubs (3 on 360L003A and 22 on 360L003B). The

largest tear measured 18.5 in. radially, but most of the tears ranged from 12.0 to 14.0 in. radially.

One of the tears extended radial!y outward to approximately 5.0 in. inboard from the clevis inside

diameter (ID). The radial extent and frequency of the tears identified in the inhibitor stubs are

within the range of tears noted on past flight motors. The edges of the tears appeared rough and

could be placed together, demonstrating no material loss or erosion. This indicates that the tears

occurred after motor burn.

Forward Sezments. The stress relief flap was present over the full circumference on both forward

segments but was severely heat affected. Up to half of the flap length was eroded for part of the

circumference. The castable inhibitors were completely missing over the full circumference. Some

axial tears were identified on the remaining heat-affected flap, similar to 360L001, which had

numerous flap tears. A final evaluation of the thermal performance of the insulation will be

accomplished after the remaining material is measured at the Clearfield H-7 facility.

4.11.2 Case Component Performance

4.11.2.1 Summary. Fretting was observed on five of the six field joints. Overall, this flight

exhibited fretting comparable to 360L002 (STS-27). A few of the pits measured slightly deeper (as

deep as 0.013 in.) than those from 360L002. Figure 4.11-1 shows the relative location of the

fretting. The 360L003 fretting was worse on the LH motor, while on 360L002 the RH motor

fretting was worse. (On 360L001 (STS-26R) the fretting was relatively even.) Based on the last

three flights, there is a bias towards the center and aft regions of the motors.

All three RH stiffener rings had cracks and buckles. There were a total of five outer

ligament cracks on the boltholes of the corresponding stiffener case stubs. No metal damage was

noted on the LH stiffener rings and stubs. The crack that was in the LH forward stiffener stub

(at 24 deg) did not propagate during flighL A complete case evaluation is given in Volume II of

this report.

4.11.2.2 Stiffener Rings and Stubs. All three RH stiffener rings had cracks and buckles. There

were a total of five outer ligament cracks on the boltholes of the corresponding stiffener case stubs.

The affected lightweight stiffener case segments are Part 1U50715, serial numbers 50 (aft position)

and 54 (forward position).

The LH booster showed only hairline circumferential cracks in the K5NA closeout of the

stiffener attach bolts. This was seen in the region where the ramp-up foam was torn away due to

water impact centerline loads.
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The water impact damage on the RH booster was centered at approximately the 210-deg

splice plate. "Knuckling" points are at about 180 and 240 deg. No inner ligament stubho]e cracks

were detected during this KSC assessment, However, significant stubhole elongation occurred in

the 210-deg splice region. In three previous flights where water impact centered on a splice, inner

ligament cracks were found. Magnetic particle inspection during the refurbishment of this flight's

hardware will be more conclusive in detecting cracks in the stiffener cases. The 210-deg splice

adapter plates (connecting the webs) were broken on each ring at about 211 deg. Boltholes--

particularly in the ring--were elongated, or at least noticeably thickened, so that some load patterns

could be discerned.

Water impact loads on the LH booster were centered at about 140 deg. A hairline crack on

the KSNA clceeout was evident on the aft; faces of the center and aft rings. No new metal damage

was noted. This booster flew with an outboard ligament crack at the 24-deg position under the

forward stiffener ring. This crack was located. The paint on the forward face of the stuh was

unbroken, indicating no growth took place.

4.11.2.3 RH Aft Stiffener Rin[ and Stub. The RH aft stiffener ring damaged area extends from

about 186 to 236 deg. Compression buckles (bent forward) in the ring web occurred at 190, 195,

and 235 deg. The buckle at 195 deg was also cracked. A tension crack in the ring web was

observed at 216 deg. The adapter plate was broken through the boltholes at approximately

211 deg.

There were 19 broken bolts in a span from 190 deg through 234 deg. The three bolts at

212, 214, and 216 deg were intact. The RH aft stiffener stub outer ligament cracks were located

at 188 and 234 deg.

4.11.2.4 RH Center Stiffener Ring and Stub. The center stiffener ring damaged area extends from

178 to 250 deg. Compression buckles in the ring web were found at 180, 189, 231, 236, and

248 deg. The buckle at 189 deg was also cracked. The tension crack occurred at 218 deg. The

adapter plate was broken at the 211 deg location, as above.

There were 29 bolts broken in a span from 180 through 248 deg. Again, there were three

bolts in the center of the impact load which did not break (212, 214, and 216 deg). In addition,

two "lone" bolts in the knuckling region did not break. These were at 188 and 238 deg. These

two bolts were involved in the mechanism which caused outboard stub cracks.

The stiffener case stub under the center ring had two broken outer ligaments. One was at

238 deg--the exact location of one of the lone unbroken bolts. The other broken outer ligament

was at 186 deg--the next bolt over from the lone unbroken bolt at 188 deg. As pointed out in the

stiffener stub summary diagram, the hole at 188 deg was necked down and, therefore, close to

cracking the outer ligament.
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4.11.2.5 RI-I Forward Stiffener Rine _nd Stub. The forward stiffener damage extends from 174 to

248 deg. Compression buckles in the ring web occur at 188 and 244 deg. The tension crack in

the ring occurred at 220 deg. In addition to cracking through the web, the crack extended through

the flange at about 214 deg. The adapter plate was broken as in the rings above.

In this ring, 31 bolts were found to be broken. This breakage span was from 176 through

246 deg. Bolts at 212, 214, 216, and 218 deg were intacL

Only one stub outer ligament crack was noted at this ring location. This occurred at

240 deg.

4.11.2.6 Field _oint FrettinR. Fretting was observed on five of the six field joints. Overall, this

flight exhibited fretting comparable to the last flight (STS-27). A few of the pits measured slightly

deeper (as deep as 0.013 in.) than those from the last flighL The relative locations of the frets are

shown in Figure 4.11-1. Notice that this time the fretting was worse on the LH motor. On flight

360L002 (STS-27R), the RH motor fretting dominated. On 360L001 (STS-26) it was about even.

No circumferential bias has been established )'eL There may be a slight bias towards the aft ends

of the motors based on the last three flights.

The RH motor had locally severe fretting on the aft joint_ The center joint of that motor

had no fretting. The forward joint had minimal fretting.

The LH motor was considerably affected. The center joint of this motor showed the most

severe extent of fretting of any of the joints. The forward and aft joints had regions of moderate

fretting.

Fretting is established as such for documentation if it can be felt (however lightly) by

rubbing a fingernail across the pits or scratches. Depths of the deeper pits were determined by a

plunging needle pit gage and by impression molds which were measured with an optical scanner.

Several small particles of metallic debris were collected this time. Some were embedded in

the capture feature O-ring (due to disassembly). Some were scraped off the pitted areas of the

inner clevis leg. Metallurgical test results indicate this metal debri_ reached temperatures of at

least 1,500°F and possibly melting. Grease samples in the fretted region were also collected for

testing of heat and chemical degradation.

4.11.2.7 LH Center-Aft Factory _loint Pin Retainer B_nd. After booster recovery from the ocean,

it was noticed that the EPDM weatherseal on this joint was unbonded in several places around the

case. This rubber adheres quite well to the pin retainer band. In the 340 to 0 to 20 deg region,

the seal and metal retainer or hat band was lifted up enough at the aft edge to see the top of the

joint pins. It was suspected that the hat band might be broken, stretched, or that the turnbuckle

bolts might be stripped.
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This seal was removed and the retainer band disassembled and inspected. No damage of

any kind was found on any of the buckle components. It is now suspected that the band may

simply have been stretched due to water impact, when the weathereeal probably debonded.

4.11.3 8eal.s Pefforman. _

4.11.3.1 Summary. All seals performed as expected during flight. All fluorocarbon seals,

including the redesigned field joint and case-to-nozzle joint seals, performed well, with no heat

effects, erosion, or hot gas leakage evident. A complete seal evaluation is contained in Volume IV

of this report.

4.11.3.2 External Field and Factory Joints. There was no evidence of combustion product leakage

at any joint.

4.11.3.3 Aft Exit Cone Field Joint_. The LH aft exit cone field joint components suffered

extensive damage. The primary O-ring became dislodged and cut at splashdown. A 3-in. piece

was found between the GCP and the metal housing at aft exit cone demate, and other pieces were

found within the motor during field joint disassembly. The secondary O-ring also was cut at

splashdown. A piece was missing from 70 to 197 deg. There was no evidence of hot gas within or

past the sealing area.

The RH aft exit cone field joint components were in good condition. The O-rings were free

from erosion, heat effect_ or any other damage, and the sealing surfaces and O-ring glands were

devoid of soot, debris, or damage.

4.11.3.4 Case Field Joints. The case field joint O-rings, V2 filler, and sealing surfaces appeared to

be in excellent condition, with no evidence of heat effect or assembly damage. The grease

application appeared to be per design. Typical corrosion was noted on unpainted surfaces of the

joints outside of the sealing areas. The capture feature O-rings on the LH center and RH aft field

joints were scuffed by fretting marks during disassembly. A fiber was found on the land between

the primary and secondary O-ring grooves at 263 deg, probably due to disassembly.

4.11.3.5 OPT Special Bolt an.d Special Bolt Plu_ Sfads. The OPTs, special bolts, and special bolt

plugs were removed from the LH and RH motors. The seals all performed as designed, with no

evidence of gas leakage past the primary seals. Three ofthe RH motor special bolts had soot on

the bottom of the bolts and the fourth bolt had corrosion below the primary O-ring groove.

4.11.3.6 IRnition System _gints. Both S&A gaskets were in nominal condition, with no evidence of

gas leakage past the primary seals. There was no evidence of heat or damage to the gaskets or

S&A sealing surfaces.

The igniter inner and outer gaskets on both motors were in excellent condition. All seals

performed as expected, with no evidence of heat effect or blowby. The RH outer gasket had soot
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on the retainer inboard of the primary seal on both the forward and at_ faces. Soot was in contact

with the primary seal on the forward face intermittently from 280 to 0 deg. This soot was in line

with a blowhole through the putty, which k typical. No damage was found on the forward dome

boss, adapter, or chamber sealing surfaces of either motor. All igniter inner joint Stat-O-Seals e

showed typical disassembly damage to the fluorocarbon portions.

4.11.3.7 Case-to-Nozzl_ Joints. The overall joint condition was excellent on both motor. Motor

pressure was halted at the polymflfide adhesive, leaving the fluorocarbon O-rings untouched. The

polysu]fide passed the wiper O-ring at 122 deg on the RH motor but did not reach the primary

O-ring. All case-to-nozzle joint sealing surfaces and O-ring glands were devoid of heat effect, soot,

foreign material, or damage. The only O-ring damage noted was a gouge (0.25 in. circumferen-

tially by 0.125 in. axially by 0.025 in. deep) at 834 deg on the RH wiper O-ring. The gouge was

caused by a radial bolthole plug during disassembly. The aft edge of the fixed housing assembly

phenolic groove was also damaged at this location. A similar gouge was noted on the wiper O-ring

on the previous flighL Ten radial holthole plugs on the LH motor and 17 on the RH motor were

broken or damaged during disassembly.

4.11.3.8 Vent Port Plucs. The case field joint and case-to-nozzle joint vent port plugs and seals

on both motors were in excellent condition. There was no evidence of soot or heat effect on any

vent port plug O-rings. Possible extrusion damage was found on the outside diameter of the RH

aft field joint vent port plug around the full circumference.

4.11.3.9 Leak Check Port Plus. The case field joint and case-to-nozzle joint leak check port plugs

and seals on both motors were in good condition. There was no evidence of soot, heat effect, or

damage on any leak check port plug O-rings. Slight surface corrosion was found on the spotface

on one of the plugs.

4.11.4 Nozzle Performance

4.11.4.1 Summary. Pestflight evaluation indicated both nozzles performed as expected during

flight, with typical smooth and uniform erosion profiles. The 360L003A (LH) nozzle aft exit cone

and joint suffered excessive splashdown damage. A complete nozzle evaluation is contained in

Volume V of this report.

4.11.4.2 360L003A (LI-I) Nozzl¢

Aft Exit Cone. The 360L003 LH al_ exit cone showed missing CCP liner and GCP insulator over

the majority of the shell due to splashdown. The exposed aluminum shell showed no signs of heat

effect. The primary O-ring was also missing due to splashdown (refer to aft exit cone field joint

section). Traces of polysulfide remained on the forward end of the shell, but most was torn off at

splashdown. GCP plies remained on the aft 6 in. of the shell around the entire circumference.
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Spots of EA 946 adhesive remained on the exposed shell at 98, 153, 168, 205, and 235 deg.

These spots of adhesive showed glossy finishes, which indicated that bondline voids were present

prior to flight. Adhesive voids are expected due to assembly procedures and are not considered

anomalous. The 45- and 135-deg actuator brackets were not damaged. All actuator bracket screws

were still tighL

Forward Exit Cone Assembly. The forward exit cone showed missing CCP liner over the center 20

in. of the cone. This was due to splashdown and diver-operated plug (DOP) insertion. The GCP

insulator exposed by the missing liner showed no signs of heat effect. The remaining CCP liner

showed smooth erosion, with typical dimpled eroeion appearing on the aft 7 inches.

Impact marks due to DOP insertion and loose phenolics at splashdown were also observed

on the forward end of the remaining liner.

The forward 0.75 in. of the forward exit cone liner showed postburn wedgeouts at 5, 15, 65,

110, and 150 deg. The maximum radial depth of the wedgeeuts was 0.65 inch.

The aft end of the forward exit cone showed separations between the EA 946 adhesive and

the steel housing intermittently around the circumference. The maximum radial separation was

0.06 inch. Separations were also observed from 330 to 0 to 15 deg and at 120 deg between the

CCP and GCP. These were a maximum of 0.08 in. wide radially. There were no cohesive

separations or separations between the adhesive and GCP.

Throat Assembly. Erosion of the throat and throat inlet rings was smooth and uniform. Typical

popped-up, charred CCP material was observed on the forward 1.5 in. of the throat ring at 312

and 357 deg.

Impact marks due to DOP insertion and loose phenolics at splashdown were observed on the

throat ring liner. Popped-up, charred CCP material was also observed on the forward 0.8 in. of

the throat inlet ring at 72 and 188 deg. Throat diameter measurements will be taken at the

Clesrtield H-7 facility.

.Forward Nose (-503) and Aft Inlet (-504) Rincs. The forward nose and aft inlet rings showed

smooth erosion with no wedgeouts, pockets, or wash areas observed. The forward 1.3 in. of the

-503 ring showed typical popped-up charred CCP material at 13, 119, 204, and 270 deg.

Nose Cap. The nose cap showed smooth erosion, with no pockets or major washes observed.

Impact marks due to DOP insertion and loose phenolics at splashdown were observed on the

forward end of the nose cap. The aft 2.4 in. of the nose cap showed postburn wedgeouts of

charred liner from 122 to 161 and 220 to 360 to 40 deg. Popped-up, charred CCP material was

also observed intermittently around the nose cap aft end.
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Cowl Rin[. The cowl ring showed smooth erosion, with no wedgeouts observed. Typical erratic

erosion was observed on the cowl ring intermittently around the circumference. All cowl ventholes

appeared to be plugged with soot and slag.

Outer Boot Ring. The outer boot ring (OBR) showed smooth erosion, with no wedgeouts. The

forward 2 in. showed typical popped-up, charred CCP material at 90, 123, 165, 180, and 245 deg.

The aft tip adjacent to the flex boot showed fractured, charred CCP material from 43 to 135 and

155 to 360 to 20 deg. The ¢owl-to-OBR bondiine remained intact

Fixed Housing Assembly. Fixed housing insulation erosion was smooth and uniform. Postburn

wedgeouts were observed on the forward 2 in. at 97, 204, 240, 270, and 338 deg. The maximum

radial depth of the wedgeouts was 0.45 inch. Slag deposits were minimal on the aft end of the

fixed housing insulation (less than observed on 360L001 (ST_26) and 360L002 (STS-27)).

The fixed housing assembly aft end showed no bondiine separations and no metal corrosion.

The alignment pin (case-to-nozzle joint) showed two cracks. It is not known whether the cracks

occurred before assembly, during assembly, or during disassembly.

Aft Exit Cone Field Joint. The backfilled RTV extended below the joint char line 360 deg

circumferentially. RTV reached the high-preseure side of the primary O-ring intermittently around

the joint. One unfilled void area was observed at 225 deg (0.20 in. radially by 0.25 in.

circumferentially). There was no blowpath extending from the flow surface to the unfilled void

area. The remainder of the joint circumference also showed no blowpaths.

The 360L003A (LH) aft exit cone field joint suffered damage as a result of splashdown. A

separation from 80 to 180 deg (0.25 in. maximum) was observed between the forward and aft exit

cones before disassembly. The majority of the primary O-ring was lost with the aft exit cone

phenolics at splashdown. Following joint disassembly, a 3-in. section of the primary O-ring was

found caught in a bondiine separation on the forward exit cone aft end. The remainder of the

primary O-ring was located inside the aft segment. The secondary O-ring was severed in two

places, with the 71- to 197-deg arc completely missing.

Metal and bolt damage within the joint was observed from 56 to 206 deg. HeUcoils* were

pulled from the aft exit cone threaded holes from 71 to 198 deg. The aft exit cone aluminum

threads were stripped in this range. The forward end of the aft exit cone shell also showed

displaced metal at threaded hole locations. This damage may be cause for rejection of the

aluminum shell. Three bolts were broken at 131, 135, and 142 deg. The remaining screws in the

56- to 206-degrange showed bending,flattenedthreads,and dings.The boltsand Helicoils*from

210 to 360 to 52 deg showed no damage. Halfofthe 91.8-degalignmentpin was fracturedand

missing. The forward exitcone aR flangethroughholesshowed displacedmetal at 75,78.75,82.5,

183.75,and 195 deg. The 91.8-degalignmentpinholealsoshowed displacedmetal. This damage is

not cause forrejectionofthe steelforward exitcone housing.
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Rust and aluminum oxide corrosion were observed within the joint outboard of the primary

O-ring intermittently around the circumference. Severe rusting was observed on the aft end of the

forward exit cone housing from 80 to 210 deg. Minor pitting was observed after the rust was

scrubbed off, but the depth of the pitting did not exceed refurbishment repair specifications limits

(0.010 in.). The aluminum oxide and rust observed around the remainder of the joint

circumference was similar to that observed in the STS-26 (RH) aft exit cone field joints.

4.11.4.3 360L003B (RH) Nozzle

Aft Exit Cone. The 360L003B aft exit cone showed the entire CCP liner missing and portions of

the GCP insulator torn and missing due to splashdown. The aft exit cone aluminum shell was

exposed from 70 to 90 deg (2.5 ft circumferentiaily by 10 in. axially) forward of the compliance

ring. The exposed GCP plies and aluminum shell showed no signs of heat effect. The missing

CCP liner and GCP insulator are typical posttlight observations and occurred during exit cone

severance and at splashdown.

The 45- and 135-deg actuator brackets were not damaged. Minor paint scratches were

observed. All actuator bracket screws were tight. Separations between the polysulfide and the aft

exit cone shell were observed intermittently around the circumference. The maximum radial

separation was 0.04 inch. Postflight measurements of the polysulfide groove radial width showed

that the GCP insulator did not pull away from the aluminum shell during cooldown. The average

postflight radial width of the groove was 0.20 inch. The polysulflde appeared to shrink axially aft

up to 0.13 inch.

Forward Exit Cone Assembly. The 360L003B forward exit cone showed missing CCP liner over

the center 20 in. of the cone. This was due to splashdown and DOP insertion. The GCP

insulator exposed by the missing liner showed no signs of heat effect- The remaining CCP liner

showed the typical dimpled erosion pattern seen on all previous postburn nozz]es. The maximum

depth of the dimpled erosion was 0.15 inch. Postburn wedgeouts of charred CCP were observed

on the forward 0.5 in. at 50, 80, 160, 190, 260, and 290 deg. The maximum radial depth of the

wedgeouts was 0.4 in. at the forward end.

The aft end of the forward exit cone showed bondline separations between the EA 946

adhesive and the steel housing, and cohesive separations within the CCP intermittently around the

circumference. The maximum radial separations were 0.02 and 0.01 in., respectively.

Throat Assembly. Erosion of the 360L003B throat and throat inlet rings was smooth and uniform.

Typical popped-up, charred CCP material was observed on the forward 1.5 in. of the throat ring

intermittently around the circumference and on the forward 0.66 in. of the throat inlet ring from

200 to 265 deg. Intermittent impact marks were also noted on the throat ring. Throat diameter

measurements will be taken at the Clearfield H-7 facility during internal joint disassembly

operations.
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Forward Nos¢ (-503) and Aft; Inl_ (-504) Rin_s. The 360L003B forward nose and aft inlet rings

showed smooth erosion, with no wedgeout_ pockets, or wash areas observed. Popped-up, charred

CCP material was observed on the forward 1.35 in. of the -504 ring at 175 deg (3.5 in. wide

circumferentially) and on the forward 1.0 in. of the -503 ring at 75 deg (8 in. wide

circumferentially). These are typical postburn occurrences.

Nose Cap. The 360L003B nose cap showed smooth erosion with no pockets or major washes

observed. Minor slag deposits were observed on the forward 1.5 fL of the flow surface. The nose

cap aft 2 to 3 in. showed typical postburn wedgeouts of charred CCP material from 17 to 35, 105

to 128, 150 to 186, 220 to 245, and 250 to 275 deg. No wedgeouts were observed on the forward

end of the nose cap. Popped-up, charred CCP was also observed on the aft end intermittently

around the circumference.

Cowl Ring. The 360L003B cowl ring showed the typical erratic erosion seen on previouspostbum

RSRM cowl rings. The forward portion of the ring eroded a maximum of 0.15 in. more than the

aft end. Typical postburn wedgeouts of charred CCP were observed on the aft 3.0 in. from 25 to

65, 240 to 300, and 352 to 0 to 10 deg. The maximum radial depth of the wedgeouts was

0.85 inch. All cowl ventholes appeared plugged with soot and slag except those at wedgeout

locations.

Outer Boot Ring. The 360L003B OBR showed smooth erosion with no wedgeouts. The aft tip

adjacent to the flex boot was intact 360 deg circumferentia]ly. The cowl-to-OBR bondline remained

intact.

Fixed Housing Assembly. The 360L003B fixed housing insulation erosion was smooth and

uniform. The forward 2 in. of the fixed housing showed typical postburn wedgeouts of charred

CCP from 52 to 59, 65 to 72, 80 to 95, 130 to 135, 203 to 213, 300 to 305, and 325 to 332 deg.

The maximum radial depth of the wedgeouts was 0.4 inch. Minor slag deposits were observed on

the aft portion of the liner surface. There were no bondline separations observed on the aft end of

the fixed housing.

The fixed housing aft flange showed no damage to the metal surfaces, boltholes, or O-ring

grooves. All metal surfaces were greased, and no corrosion was observed.

360L003B Aft Exit Cone Field Joint. The backfilled RTV extended below the joint char line 360

deg circumferentially. RTV reached the high-pressure side of the primary O-ring groove

intermittently around the circumference. There were no distinct blowpaths observed within the

joint. The primary O-ring did not see pressure during motor operation and showed no signs of

blowby, erosion, heat effect, or assembly damage.
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The aft exit cone field joint bolts were not bent, broken, or damaged. Raised metal was

observed on the forward exit cone aft end 91.8-deg alignment pin hole due to the aft exit cone

demate. The maximum dimenmons were 0.02 in. circumferentially, 0.01 in. axially, and 0.10 in.

radially.

The aft exit cone shell forward face showed aluminum oxide corrosion intermittently around

the circumference between the O-ring grooves. No pitting was observed. Rust corrosion was

observed on the forward exit cone aft flange intermittently around the circumference, with the

worst condition located from 200 to 215 deg. No pitting was observed.
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APPLICABLE DOCUMENTS

The latest revisions of the following documents are applicable to the extent specified herein.

Document

TWR-15723C

TWR-18984

TWR-16340

TWR-16961

TWR-19001a

TWR-10211-88

TWR-17338

TWR-17339

TWR-19197

TWR-19092

TWR-17272-1

TWR-17541-1

CPWl-3600A

Redesign Development and Verification Plan, Rev C

Engineering Requirements Document for RSRM Third Flight (Flight
Set 360L003)

Nondestructive Criteria for the Nozzle Phenolic Component

RSRM Grain and Insulation Structural Analysis Summary

Redesigned Solid Rocket Motor Flight Readiness Review (MSFC Level HI)

5 September 1988 Mass Properties Quarterly Status Report

Mass Properties History Log Space Shuttle 360L003--Left Hand

Mass Properties History Log Space Shuttle 360L003--Right Hand

Structural Preflight Predictions for 360L003 (STS-29) DFI Instrumentation

Predicted Ballistic Performance Characteristics for RSRM-3

Flight Motor Set 360L001 (STS-26R) Final Report, Volume I

Flight Motor Set 360L002 (STS-27R) Final Report, Volume I

Prime Equipment Contract End Item Detail Specification, Rev A (including
Addendum G)
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